6th Grade Independent Projects

Hello Students,

This resource packet includes multiple projects that you can work on independently at home. Each project can be completed over multiple days, and the projects can be completed in any order. These projects are standards-aligned and designed to meet the Remote Learning instructional minutes guidelines by grade band.

Use the table of contents on this page to navigate through the project packet.

6th Grade Literacy Project: Two Sides 1
6th Grade Math Project: Repainting a Room 6
6th Grade Science Project: Why do bicycle disc brakes get so hot? 10
6th Grade Social Science Project: Time and Place 22
6th Grade Literacy Project: Two Sides

Estimated Time 120 minutes

Grade Level Standard(s)

| RI.6.1 Cite textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text. |
| RI.6.2 Determine a central idea of a text and how it is conveyed through particular details; provide a summary of the text distinct from personal opinions or judgments. |
| W.6.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. |

Caregiver Support Option
Read and discuss the text. Share your opinion on the topic.

Materials Needed
Pen or pencil, paper.

Question to Explore
How do we use evidence to support arguments?
How can reading help us understand topics and form arguments?

Student Directions
See below!

Activity 1: Understanding Both Sides - For some issues and topics, there are no right answers. We can discuss topics that might have information that conflicts, and evidence that supports different views. To do this, we need to read to look for evidence and identify central ideas, facts, and other evidence.

A. Read the description about scooters in the box below. Then, free-write your thoughts on the topic of electric scooters in cities. You can write whatever comes to mind. Try to write for about 5 minutes, pushing yourself to keep going even if you feel stuck.

Electric scooters are plug-in electric vehicles with two or three wheels. The electricity is stored on board in a rechargeable battery, which drives one or more electric motors. They are dockless, meaning they don’t need to be stored in a specific place like Divvy bikes are. They can zoom down sidewalks at 15mph or 25mph and have GPS trackers and wireless connectivity. Companies offer on-demand fleets of them that you can rent through an app - like how Uber and Lyft offer on-demand fleets of taxis.

B. Read the article below. As you read, ask these questions, and annotate your responses:

- What surprised me?
- What does the author think I already know?
- What challenged, changed, or confirmed what I already know?

C. Write a summary of the article. Your summary should not have your opinion or quotations from the text. Use your own words! Your summary should include: 1) The title of the article, 2) In the
Electric scooters help ease traffic in cities, but can also cause injuries
By USA Today, adapted by Newsela staff

AUSTIN, Texas – Riders on scooters zip around cities like Austin, Texas, and Los Angeles, California. Scooters are meant to ease car traffic. They also offer an affordable transportation option.

However, critics say riders put pedestrians in danger by driving the scooters on sidewalks. Some say they ignore traffic rules. Emergency rooms have reported a range of scooter-crash injuries.

The motorized scooters are called "dockless" because they can be picked up and dropped off anywhere. They can be rented with a smartphone.

Now, the Centers for Disease Control and Prevention, or CDC, are studying the scooters to understand their safety risks. In the first study of its kind in the U.S., CDC scientists arrived in Austin recently to look into scooter crashes. They want to see how to prevent them. They’re teaming up with Austin health and transportation officials.

The study will focus on emergency medical services calls and emergency-room data about scooter crashes, said Dr. Philip Huang. He works for Austin Public Health. The health department asked for the CDC study.

Looking For Ways To Prevent Crashes

The CDC scientists will interview people involved in the crashes to see how the crashes occurred, he said. Then they will offer ways to prevent them. That information could lead to new rules for scooter riders.

City leaders want to get better information on injuries from crashes, Huang said. "It’s so new, we really don’t know very much about it."

Dockless scooters started becoming popular in 2016. They have multiplied in some cities as a cheap, easy-to-use transportation choice. The electric scooters, from companies like Bird and Lime, are available to rent using smartphones.

In Austin, riders took 275,300 trips on the scooters in October, a city report said. They covered 264,300 miles, said the report. In that month, the city reported only 14 scooter crashes with nine injuries and no deaths, the report said.

The scooters offer a cheap travel alternative in cities like Austin, which is growing and struggling with traffic, said Jason JonMichael. He is a city transportation leader.
Officials have Scooters Help Reduce City Traffic

been glad to see rows of scooters left at bus and rail stations. It's a sign that riders are using the scooters to reach public transportation, JonMichael said. That's key in a city like Austin, he said. It is another way to reduce traffic.

However, some people have complained of scooters zipping past them on the sidewalks. Some say they go the wrong way on roads.

At the University of Texas at Austin dozens of students motor around on the scooters. University officials started a committee to review scooter rules.

From September 1 through December 3, officials at University Health Services counted 110 scooter-related injuries. Those included bruises, cuts, head injuries and more, said Dr. Melinda McMichael. She works at the health center.

"We weren't seeing these kinds of numbers with scooter accidents a year ago," she said. "It's concerning."

Safety Concerns Must Be Addressed

Another complaint is about scooters left on sidewalks or in front of businesses. Rules for riders can be hard to enforce.

Councilwoman Ann Kitchen said she sees the scooters' benefits. However, the parking complaints and safety concerns need to be worked on, she said. The CDC study should help with that, she said.

"One of the key things the city has to figure out is where is it appropriate for scooters to be ridden," Kitchen said. "We're learning a lot."

Other cities wrestle with how to handle the scooters. Santa Monica, California, is marking some street parking spaces for scooter parking. Other places, such as Nashville, Tennessee, and Washington, D.C., have tried similar approaches.

The scooter craze is showing growing pains. They are similar to those seen when ride-sharing companies like Uber and Lyft got started, said Susan Shaheen. She works at a transportation study center at the University of California, Berkeley.

A key difference is that cities are tackling the problem faster. They are also sharing information with each other.
Activity 2: Finding Evidence - Now that you have an understanding of the text and more information about the topic you can go deeper into exploring the evidence about this topic. Go back to the text and look for evidence that supports a central claim that electric scooters are a good idea for Chicago and evidence that supports the central idea that electric scooters will have more negative effects than positive ones in Chicago. Although the text does not talk about Chicago specifically, you can use what it says and your own experience to find evidence to support these ideas.

A. Record your evidence in a two column chart like the one below.

<table>
<thead>
<tr>
<th>Central Idea</th>
<th>Central Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric scooters will benefit the city of Chicago.</td>
<td>Electric scooters will not benefit the city of Chicago.</td>
</tr>
</tbody>
</table>

Evidence is always fact, not opinion. Here are some examples of types of evidence that you can look for:

- Examples
- Descriptions
- Numbers and Statistics: Specific quantities or comparisons to depict the amount, size, or scale.
- Quoted Words: Opinions or conclusions of someone who is an expert on the subject (Voice of Authority) or someone who might be a participant or witness to an event (Personal Perspective). Other times the author might simply cite others (Others’ Words) to provide support for a point.

Now that you have explored the topic of electric scooters, read what you have recorded on your chart. Now that you have a good deal of evidence you can make a more informed argument about this topic. Which central idea do you support?

B. On notebook paper, choose one of the central ideas from the chart and explain why you believe it.

Activity 3: Taking a Side - For this final activity, choose one of these options.

- **Option 1:** Find someone else in your house who is old enough to understand the topic, and willing to have a debate with you. Ask them to read the texts. Put slips of paper labeled “positive” and “negative” in a bowl & draw them to decide who will represent each side. Take time to gather evidence to support your side’s claim. Ask a few family members to sit down and watch your debate, or listen to both of your speeches. Ask your family which side was most convincing and why. Talk about what information could make the other side’s argument stronger.

- **Option 2:** Create a poster using a central idea and evidence to inform an audience of people your age about this topic.
Activity 4: Reflection

A. Why is it helpful to consider more than one side when learning about a topic?
B. How might practicing considering more than one side help you think through issues and problems in your life?

Cross Content Connection:
Science, Social Science, Math: Choose a topic from one of these content areas and explore it by writing about two sides.
6th Grade Math Project: Repainting a Room

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>90 - 120 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level Standard(s)</td>
<td>6.RP.A: Understand ratio concepts and use ratio reasoning to solve problems. 6.G.A: Solve real-world and mathematical problems involving area, surface area, and volume.</td>
</tr>
<tr>
<td>Caregiver Support Option</td>
<td>Discuss when painting a room, each wall may not be a solid rectangle. There may be windows or doors which will not be painted.</td>
</tr>
<tr>
<td>Materials Needed</td>
<td>Paper, pencil, measuring tape (optional)</td>
</tr>
<tr>
<td>Question to Explore</td>
<td>What does it take to paint a room?</td>
</tr>
<tr>
<td>Student Directions</td>
<td>Imagine you are asked to repaint a room. In this project, you will determine the area of the walls, estimate the amount of paint needed to paint them, and then determine the cost for the painting project.</td>
</tr>
</tbody>
</table>

Activity 1: Getting Ready to Paint (10 minutes)

Source: [Open Up Resources](#)

A. What are some tools that might be helpful when painting a room?

B. Choose a room in your home. How many walls? Are there doors? Windows? Closets? Make observations about what you see and how that might affect how much paint is used when repainting that room.
Activity 2: How Much Does it Cost to Paint? (60 minutes)

A. Here is the floor plan to the bedroom you will repaint. Talk with a family member about how the different features (doors, windows, closets, etc) are represented on the plan.

B. Imagine you are planning to repaint all the walls in this room, including inside the closet. Label the floor plan with the following information:
 - The east wall is 3 yards long.
 - The south wall is 10 feet long but has a window, 5 feet by 3 feet, that does not need to be painted.
 - The west wall is 3 yards long but has a door, 7 feet tall and 3 feet wide, that does not need to be painted.
 - The north wall includes a closet, 6.5 feet wide, with floor-to-ceiling mirrored doors that do not need to be painted. There is, however, a smaller wall between the west wall and the closet that does need to be painted on all sides. The wall is 0.5 feet wide and extends 2 feet into the room.
 - The ceiling in this room is 8 feet high.
 - All of the corners are right angles.
C. Use additional paper to show your work when answering the following questions:
 1. If you paint all the walls in the room, how many square feet do you need to cover?

 2. An advertisement about the paint that you want to use reads: “Just 2 quarts covers 175 square feet!” If you need to apply two coats of paint on all the walls, how much paint do you need to buy?

 3. Paint can only be purchased in 1-quart, 1-gallon, and 5-gallon containers. How much will all supplies for the project cost if the cans of paint cost $10.90 for a quart, $34.90 for a gallon, and $165.00 for 5 gallons?

 4. You have a coupon for 20% off all quart-sized paint cans. How does that affect the cost of the project?

Activity 3: How Long it Takes to Paint (15 minutes)
After buying the supplies, you start painting the east wall. It takes you 96 minutes to put two coats of paint on that wall (not including a lunch break between the two coats).

 A. Your friend stops by to see how you are doing and comments that you are 25% finished with the painting. Are they correct?

 B. Your friend offers to help you with the rest of the painting. It takes the two of you 150 more minutes of painting time to finish the entire room. How much time did your friend save you?
Activity 4: Reflection (10 minutes)
On a separate piece of paper reflect on and answer the following questions.

1. How is finding the surface area of an actual room different from finding the surface area of geometric shapes (square, triangle, cube, prism)?
2. What are some other real-world examples where we can use surface area?
3. How were ratios helpful to use in this project?
4. What are the advantages and disadvantages of having a variety of sizes when buying paint?

Extension: Repainting a Room in Your Home (15 minutes)
Remember that room you made observations about in Activity 1? Let’s imagine we are going to repaint it!

A. Find all dimensions of the room you chose. Draw a floor plan and remember to use the same symbols to represent room features (door, window, closet, etc.)

B. Using the same information given in Activity 2, Part C, figure out how much it will cost to repaint the room in your home.
6th Grade Science Project: Why do bicycle disc brakes get so hot?

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>120-130 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level Standard(s)</td>
<td>MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.</td>
</tr>
<tr>
<td>Caregiver Support Option</td>
<td>Provide support as needed with reading and carrying out directions, reading texts, and discussing questions throughout the project packet.</td>
</tr>
<tr>
<td>Materials Needed</td>
<td>Paper, Pen or Pencil</td>
</tr>
</tbody>
</table>
| Question to Explore | Why do bicycle disc brakes get so hot?
How can the motion energy of an object change?
What is meant by conservation of energy?
How is energy transferred between objects or systems? |
| Student Directions | Directions for you to follow are provided in each activity. Answer any questions for which space is not provided on a separate sheet of paper. Let's do some science! |

Overview of the Project Activities:

1. Paul’s Bike Anchoring Phenomenon (10 min)
2. Analyzing PhET simulation (30 min)
3. Rolling Along Home Investigation (10 min)
4. Analyzing Paul’s Disc Brake Data (20 min)
5. Reading about Friction (20 min)
6. Modeling and Explaining Paul’s Disc Brakes (40 min)
A. Read and observe the information below, and then complete the task that follows on a separate sheet of paper.

It's a hot summer day, so Paul decides to take a bike ride. He exits his house, halfway up a large hill, and hops on his bike to ride down to a friend's house. As he approaches the bottom of the hill, Paul notices his shoelace is untied and he quickly applies the brakes to come to a loud, squealing stop. As he gets off his bike to tie his shoe, his arm brushes against the center of the bike wheel where the disc brake is. "Oww!" he exclaims, "It's hot!"

Paul thinks to himself, "What is happening to cause my disc brakes to get so hot?" He and his family brainstorm some ideas. Here's what they come up with:

- Paul: "The sun must have heated up the disc brakes because it's such a hot summer day."
- Paul's Dad: "I think it had something to do with how fast you were going. When you raced down that hill the brakes must have heated up!"
- Paul's Mom: "I think the disc brakes were rubbing a lot when you tried to stop. All that rubbing must have made them heat up."
- Paul's Sister: "I don't agree with any of these ideas. I'm not sure, but I think something else must be going on."

1. Which family member do you agree with most? __________________________. On a separate sheet of paper, explain why you agree with that family member the most.
Activity 2: How can the motion energy of an object change? (30 min)

A. Analyze the 4 figures below, paying attention to the energy bar graphs and speed dials.

Figure 1:

Figure 2:
Figure 3:

Energy

Kinetic | Potential | Thermal | Total

Speed

45 cm/s

Figure 4:

Energy

Kinetic | Potential | Thermal | Total

Speed

45 cm/s
B. Based on the 4 figures, record the changes in speed and energy in the table below.
 a. For the speed, record the difference in cm/s.
 b. For the energy, write ↑ if it increased, ↓ if it decreased, or S if it stayed the same.

<table>
<thead>
<tr>
<th>Position</th>
<th>Skater’s speed (cm/s)</th>
<th>Potential energy</th>
<th>Kinetic energy</th>
<th>Thermal Energy</th>
<th>Total Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 to 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Review the useful vocabulary in order to answer the following questions on a separate piece of paper:

Useful Vocabulary:
- **Potential energy:** stored energy an object has because of its position or state
- **Kinetic energy:** energy of an object when the object is in motion
- **Thermal energy:** energy contained within a system that is responsible for its temperature (heat)

1. Fill in the blanks with increases or decreases.

 As the skater moves down the hill, the kinetic energy ____________, the potential energy ____________, and the thermal energy ____________.

2. Look at your data table and focus on the total energy column. Write a statement or two about the “total energy” of the skater moving down the hill.

3. Thermal energy increases as the skater moves down the ramp. **Predict** why you think this happens.

4. Make connections to Paul’s bike ride (from Activity 1): Based on your observation of the figures in Activity 2, what can you say about Paul’s potential energy, kinetic energy, and thermal energy as he biked down the hill and applied his brakes?
 a. Be sure to use evidence to support your ideas.
 b. Draw if that helps you explain your ideas.
Activity 3: Rolling Along (10 min.)

A. Work with a member of your household (or on your own) to observe how an object rolls across different surfaces in your home.
 a. Find an object that rolls (a ball, a can, etc).
 b. Identify 2 - 3 different textured surfaces in your house. At least one surface should be smooth, and the others should have more texture (bare floor vs carpet/rug).
 c. Use the chart below to put down a few notes about your conversation and observations.

Describe what you observe:

<table>
<thead>
<tr>
<th>Surface</th>
<th>Description of the surface:</th>
<th>How far did the object roll?</th>
<th>Was there a change in speed?</th>
<th>What other observations did you make?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activity 4: Analyzing Paul’s Disc Brake Data (20 min)
[Adapted from: Wonder of Science: MS-PS3-5 Assessment - Changes in Energy on a Bicycle]

Paul set up the following experiment to investigate further. After each trial, he used a thermal imaging camera to determine the hottest parts of the bike. With thermal imaging, hotter parts are more yellow and red, cooler parts are more green and blue.

Trial 1 (control).
- Paul starts from outside his house, halfway up the hill.
- He carefully measures the distance before he applies the brakes and the distance it took to stop once the brakes were applied.

Trial 2.
- Paul starts at a higher point on the hill.
- He applies the brakes at exactly the same point in his ride as in trial 1 and measures the distance it took to stop once the brakes were applied.

Trial 3.
- Paul repeats the original situation in trial 1 but without ever applying his brakes.
- He measures the distance it took him to coast to a stop without using his brakes.
Paul's Data

<table>
<thead>
<tr>
<th>Trials</th>
<th>Distance before brakes applied (meters)</th>
<th>Stopping distance (meters)</th>
<th>Temperature of the disc brakes before each ride in ºC</th>
<th>Temperature of the disc brakes after stopping in ºC</th>
<th>Maximum Speed (kilometers per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Halfway up hill, with brakes</td>
<td>14m</td>
<td>2m</td>
<td>19ºC</td>
<td>37ºC</td>
<td>20 km/h</td>
</tr>
<tr>
<td>2. Higher point on the hill with brakes</td>
<td>34m</td>
<td>6m</td>
<td>19ºC</td>
<td>42ºC</td>
<td>25 km/h</td>
</tr>
<tr>
<td>3. Halfway up hill, without brakes</td>
<td>--</td>
<td>100m</td>
<td>19ºC</td>
<td>20ºC</td>
<td>20 km/h</td>
</tr>
</tbody>
</table>

Analyze the information in the picture and data in the table above and describe what is happening to cause his disc brake to get so hot.

What patterns do you see in the information (picture and data)?	Ranking based on usefulness to answer the question (Least, somewhat, most useful)

Activity 5: Reading about Friction (20 min)

[Adapted from: Amplify Science Force & Motion Lesson 1.4]

A. Review the focus questions before you read the article.
B. Keep the questions in mind while you read, and highlight or annotate any information that might help you answer those questions.
C. After you are finished reading, answer the focus questions on a separate piece of paper.

Focus Questions:

1. Why does an object that is sliding across carpet slow down?

2. Compare an object sliding across carpet and that same object sliding across a bare floor. Why is the object quicker to slow down on carpet than on the bare floor?

3. In Activity 2, question 3, you made a prediction about the thermal energy as the skater moved down the ramp. Use information from this reading to now state why the thermal energy increases as the skater moves down the ramp.

Friction: Why Hockey Rinks Are Not Carpeted [Source: Amplify Science - Force & Motion Unit]

If you’ve ever slid a hockey puck across an ice rink, you know that it can travel a long way with just one push. In fact, if you don’t touch it, the puck might go so far that it doesn’t stop until it hits something like a wall! If you try the same thing on carpet, you’ll find out that there’s a reason nobody plays hockey on carpet: the puck doesn’t go very far on a single push. If you hit it with a hockey stick and then don’t touch it, the puck slides across the carpet a bit, slows down, and then stops. What happened? Since the velocity of the puck changed, there must have been a force acting on it. That force is friction, the force that slows objects down as they move across surfaces.

Why does friction cause objects to slow down? Friction is a force that acts in the opposite direction of an object’s movement. Surfaces that are rough or sticky tend to have a lot of friction when an
object moves across them. Surfaces that are smooth tend not to have a lot of friction. That's why the hockey puck moves much farther with one push across ice than across a carpeted floor—carpet is rougher than ice.

There’s one place where there is no friction at all to slow things down: space! On Earth, there is some friction caused by the air in the atmosphere. This friction is known as air resistance. However, in space, there is no air. Therefore, there’s no air resistance, and an object that starts moving will keep going forever—unless a force is exerted upon it, such as when it collides with something.

Motion of a Hockey Puck on Ice vs. Carpet

Ice

Carpet

A hockey puck travels much farther on ice than on carpet because ice exerts much less friction on the puck than carpet does.
Activity 6: Explaining Paul’s Bicycle Disc Brakes (40 min)
[Adapted from: Wonder of Science: MS-PS3-5 Assessment - Changes in Energy on a Bicycle]

A. Modeling the Phenomenon: Use graphical representations (bar graphs similar to the ones in the images from Activity 2) to show how the type of energy experienced by the cyclist and the amount of each type of energy changes at each of the following points in his ride.

<table>
<thead>
<tr>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopped at the starting point on the hill</td>
</tr>
<tr>
<td>As he travels down the hill and first starts to apply the brakes</td>
</tr>
<tr>
<td>At the bottom of the hill when he has stopped</td>
</tr>
</tbody>
</table>

Directions: Show the energy transfer (flow) that occurs in the system using bar graphs that take into account how you show the total amount of energy in the system. (Tip: Make bar graphs similar to the ones in the images from Activity 2).
B. Explaining the Phenomenon: **What causes Paul’s disc brakes to get so hot?** Use your model from Part A and the information you gathered from Activities 1-5 to construct your explanation.

Terms to include: potential energy, kinetic energy, thermal energy, friction, energy transfer

Claim: What is your answer to the question?

Evidence: What are 3 specific observations or data pieces from Activities 1-5 that support your claim?

1.

2.

3.

Reasoning: How does your evidence support your claim?
6th Grade Social Science Project: Time and Place

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 120-130 minutes</th>
</tr>
</thead>
</table>
| **Grade Level Standard(s)** | SS.IS.3.6-8. Determine sources representing multiple points of view that will assist in organizing a research plan.
SS.IS.5.6-8.MdC. Identify evidence from multiple sources to support claims, noting its limitations.
SS.IS.6.6-8.MdC. Construct explanations using reasoning, correct sequence, examples, and details, while acknowledging their strengths and weaknesses. |
| **Caregiver Support Option** | Notes on the structure:
- Activities are designed to be done in order - each one builds on the other so you should no skip activities
- Activities are an average of 15-20 mins each. More than one can be done in a day.
Before giving the activities to students, caregivers might:
- spend time reading and discussing the “student directions” together. Encourage them to ask any clarifying questions.
- When reading the texts, students should circle or underline any unfamiliar words so you both can define them together
In this particular lesson, it’s important to note that:
- student(s) are developing coded messages, you might want to review the directions and the “Coding Code of Conduct” on p. 10
- Consider making your own coded message for them and ask your student to decipher
- Ask them to share and explain their codes to you - on p. 9 students will review and revise their message. Consider using the examples provided to discuss and reflect on what can be better. |
| **Materials Needed** | Writing tool, paper |
| **Question to Explore** | How can I capture where I am in time and place? |
| **Student Directions** | Every moment we live is a moment of history! The things we write, the images we draw become the artifacts of our experience, the primary sources that will tell others about our lives. In this mini-inquiry, students learn about historical settings by examining images of the past. Throughout the week, they use their learning to create a “Here and Now Snapshot.” Their creation will serve as an artifact that tells the story of their experience during this unique period of time. |
Activity 1: Examining Historical Setting - Let’s Get Started!
This week we’re thinking about the question: How can I capture where I am in time and place?
Your challenge this week is to create a “Here and Now Snapshot” to represent your historical setting in words and images.

Today you will: Look at images for details about their historical setting & Identify your own setting
You will need: Paper or notebook, Writing tool and “My Setting” handout (optional)

A. THINK - Have you ever thought about what someone 20, 30, or even 100 years from now would think about young people? Guess what... someday in the future, someone might look at the things you’ve created and wonder about you.

B. EXPLORE - Let’s think like historians by looking at historical settings. Historical setting describes where and when something took place. What can we learn about life in the past by looking at the historical setting of each picture below?

C. DO

Day 1: New York City
What can we guess about this picture’s historical setting (where and when the picture took place)?

Look for details that provide evidence about where and when the photo was taken.

- Who is in this picture? What do you notice about what they are wearing? What do you think their relationship to one another is?

- What objects do you see? What activities do you see? What do you see in the background?

- Where do you think they’re located?

- When: What time of day do you think this is? What time of year could it be? Is this in the past or present?
DIG DEEPER

Day 1 Birthday Party
What can we guess about this picture’s historical setting (where and when the picture took place)?
Look for details that provide evidence about where and when the photo was taken.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Who is in this picture? What do you notice about what they are wearing? What do you think their relationship to one another is?</td>
<td></td>
</tr>
<tr>
<td>What objects do you see? What activities do you see? What do you see in the background?</td>
<td></td>
</tr>
<tr>
<td>Where do you think they’re located?</td>
<td></td>
</tr>
<tr>
<td>When: What time of day do you think this is? What time of year could it be? Is this in the past or present?</td>
<td></td>
</tr>
</tbody>
</table>

Photographs are not the only thing that tell us about the past. Today, you will complete the first step of the challenge! Record the who, what, where, and when of your setting on paper (or use the "My Setting" handout at the end of the packet if you like.). You don’t have to write about this exact moment – you can think back to a moment from your day that really captures your life right now.

Activity 2: Representing Your Setting - Let’s Get Started!
You will need: Paper or notebook, Writing tool, Drawing materials (optional) and “Drafting Template” handout (optional)

A. THINK - You’ve learned about setting by analyzing photographs. How would it be similar or different if you were analyzing a painting or drawing?
B. EXPLORE - Let’s think like historians! This is a sketch by the artist Vincent van Gogh.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What can we learn about the setting?</td>
<td></td>
</tr>
<tr>
<td>Who is in the picture? What are they wearing? How are they connected to each other?</td>
<td></td>
</tr>
<tr>
<td>What objects do you see? What activities do you see?</td>
<td></td>
</tr>
<tr>
<td>Where: What’s in the background? Is this inside or outside?</td>
<td></td>
</tr>
<tr>
<td>When: What time of day do you think it is? What season could it be? Do you think this is today or long ago?</td>
<td></td>
</tr>
</tbody>
</table>
C. DO - Keep in mind your challenge this week: Create a “Here and Now Snapshot” to represent your historical setting at this time. Today, you will complete the next step of the challenge, which is to make a first draft of your “Here and Now Snapshot”! Use pictures and words to show your setting on paper (or use the “Drafting Template” handout at the end of the packet if you like).

Your goal: Show your historical setting in words and pictures.
- What do you want the viewer to think?
- What do you want the viewer to feel?
- What do you want the viewer to know or wonder about your moment in time and place?

Activity 3: Evaluating the Work - Let’s Get Started!
Today you will: Reflect on your progress and make a plan to improve your work. You will need:
- Your work from previous activities
- Paper or notebook
- Writing tool

A. THINK - You’ve already created the first draft of a “Here and Now Snapshot” that shows your setting using words and pictures! Pause to reflect on your work. When someone looks at your work, will they understand your setting?

B. EXPLORE: Look at this student’s “Here and Now Snapshot.” (to the right)

How much does this image tell you about the historical setting?

What is your reaction to this?

What do you think the maker is trying to communicate?

Which details show the Who, What, Where, and When?
The artist could add...

The artist could try...

The artist could adjust...

C. DO - Keep in mind your challenge this week: Create a “Here and Now Snapshot” to represent your historical setting at this time.

DIG DEEPER - Today, you will explore your own first draft to check if you are meeting your goal to show your historical setting in words and pictures. **Pencils down! This is a thinking exercise!**

1. Look at your work and ask:
 - Which details show the Who, What, Where, and When?
 - What will the viewer think or feel when they see this work?

2. Wait, still don’t touch your work! First, make a work plan! Complete one of these sentences:
 - I will add...
 - I will try...
 - I will adjust...

Activity 4: Finalizing the Work Let’s Get Started!

A. THINK - Remember your work plan? That’s when you said: I will add... OR I will try... OR I will adjust... Decide or discuss: What will you do next to finalize your work?

B. EXPLORE - Check out some “Here and Now Snapshots” by other students. What changes did this artist make to their work? How do these changes help you understand more about their historical setting?

First Draft

Final Work
C. **DO** - Finalize your “Here and Now Snapshot” to best represent your historical setting.
 - Get out your first draft and any other materials from previous activities and think about your work plan.
 - Decide: Do you need a fresh piece of paper to start over? Or will you just edit your first draft to make your final draft? Get to work making your final draft!

Activity 5: Reflecting and Sharing - Let’s Get Started!

A. **THINK** - Someday, a long time from now, someone might look at the things you’ve created to wonder about you. Today, someone in another household, another city, or another country might be wondering about you right now!

B. **EXPLORE** - Look at your finished “Here and Now Snapshot.” Think about or discuss:
 - Looking at my “Here and Now Snapshot,” what will viewers think, feel, or wonder about me or my historical setting?
 - What evidence did I include to make the viewer think or feel that?

C. **DO** - Now that you’ve completed your “Here and Now Snapshot,” it’s time to share your work with others! Here are some ideas for connecting with others:
 - Share with a family member and...Help them to create their own. Ask them what your work makes them think, feel, or wonder (or use the “Sharing” handout to get a written response)
 - Share with your classroom community (if this is an option) and discuss similarities and differences in what you’ve decided to include
 - Ask an adult to help you share your work online with the hashtag #inquiredtogether
 - Hang your “Here and Now Snapshot” in the window
 - Keep your “Here and Now Snapshot” somewhere safe as a historical record that you and others can look back on later

Cross Content Connection: This week we have spent a lot of time thinking and learning about historical settings by examining images of the past. You even created an artifact that tells the story of your experience during this unique period of time! How can we connect this learning to other content areas like math and science?

 - **Science:** Have a conversation with one of your adult family members. How were things different for them back when they were a kid? Especially when thinking about communicating with others. Did they have the internet back then? What about smartphones? Compare and contrast your lives together. How were things different when it comes to technology? How are things the same?

 - **Math:** How has your family and neighborhood changed over time? Math can help us when we are collecting data about who we were and who we are, because numbers matter. How many people are in your family? How many of your family members live nearby? Ask an adult to look up the population of your neighborhood in the year 2000 or the year you were born.

 For older grades: Does your neighborhood have more or less people in it today than before? How do you know? How does the population of your neighborhood affect the way you live?
My Setting

WHO is with you?

Who is *not* with you?

WHAT is going on?

What is *not* going on?

WHERE are you?

Where are you *not*?

WHEN is it?
DAY 2
Drafting Template

Who:

What:

Where:

When: