5th Grade Independent Projects

Hello Students, Families and Caregivers,

This resource packet includes multiple projects that students can work on at home independently or with family members or other adults. Each project can be completed over multiple days, and the projects can be completed in any order. These projects are standards-aligned and designed to meet the Remote Learning instructional minutes guidelines by grade band.

Use the table of contents on this page to navigate through the project packet.

5th Grade Literacy Project: Working Toward Justice in Chicago 1
5th Grade Math Project: Building Blocks 8
5th Grade Science Project: Reading by Starlight 18
Grade 3-5 Social Science Project: Uplifting Actions 27
5th Grade Literacy Project: Working Toward Justice in Chicago

Estimated Time
70-80 Min.

Grade Level Standard(s)
RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text.
RI.5.2 Determine two or more main ideas of a text and explain how they are supported by key details; summarize the text.
W.4.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly.

Caregiver Support Option
Help students with unknown vocabulary

Materials Needed
Pencil, Drawing materials

Question to Explore
What can we learn from a text? Why does the author share specific details in informational text? How can pictures help us make connections to informational text? Why is it important to learn about our City’s History? How does what happened before we were born make an impact on our lives today?

Student Directions
Follow the directions in each activity.

Activity 1: Fair vs. Unfair - Directions: Think about times you and/or your family members have been treated fairly and unfairly. If you can, have a discussion with your family about these times.

A. Copy the table below on a separate piece of paper and list the times you discussed.

<table>
<thead>
<tr>
<th>Times I/we have been treated FAIRLY</th>
<th>Times I/we have been treated UNFAIRLY</th>
</tr>
</thead>
</table>

B. Now think about how you would define “fair” and “unfair.” Write a definition for each under the table you drew.

C. Now that you have some fair and unfair times, choose one of each and write about what made it fair or unfair on your paper. Below are some sentence stems that help you get started.

Time I was treated fairly: What made it fair?

Time I was treated unfairly: What made it unfair?

Activity 2: Reflecting on Chicago's in 1919 - Now that you’ve thought about what is fair and unfair in your own life, let’s look at some practices in Chicago and consider their fairness and unfairness. We are going to read two articles from the past.

Both texts talk about segregation. Segregation means to set apart based on unfair standards of power that have to do with race and racism. In Chicago and much of the United States, this meant that people were separated based on the color of their skin.
As you read these articles, think about the main idea. A **main idea** is more than a topic. To state the main idea, it’s important to know what the text is about (the topic) and then to be able to say so what about it. The “so what” can be the angle, idea, or perspective that the author brings to the topic. (From Reading Strategies by Jennifer Serravallo)

Directions: As you read the following passage, ask yourself the following questions: What is the topic of the passage? What is each section mostly about? Now that I’ve identified the topic, what is the main idea of the passage? What do I think the author is trying to say about the topic?

Our city has some very tough history that makes it what it is today. This reading is about what happened in Chicago in the Summer of 1919.

The 1919 Race Riots - Megan Geigner, Ph.D., Northwestern University

One hundred years ago riots broke out in U.S. cities. In that summer, mobs of angry white people formed. They attacked black people for trying to have the same rights that white people had. Black people resisted. They defended themselves in many brave ways. That summer of 1919 is called the Red Summer. It was an important event in black history.

During 1919, there were displays of black agency. Agency meant black people had a sense of self, their history and their culture. Black veterans wore their military uniforms in public. Black children swam in the white section of Lake Michigan. Black farmers in Arkansas fought for better pay and working conditions.

Between July 27th and August 4th, 1919, Chicago broke out in violence. The moment that caused this violence was when a white beachgoer threw a rock at a black teenager in Lake Michigan, after the teenager had floated over the invisible segregation line separating the white beach from the black beach. Legally, all beaches were open to all Chicagoans, but in practice, Chicago beaches were segregated. The teenager drowned. Witnesses identified the man who threw the rock, but the Chicago police officer on the scene refused to make an arrest. A group of African Americans from the community gathered at the beach to demand justice. Soon, mobs of white and black Chicagoans were fighting. Many people died or were seriously injured and the city sustained thousands of dollars’ worth of property damage. Most of this damage occurred in the Black Belt, the area of town in which white property owners permitted black renters and businesses. Several groups—including the National Association for the Advancement of Colored People (NAACP)—demanded a formal investigation into these incidences of violence, which were deemed “race riots.”

Black newspapers said there would be no peace until black people had equal justice. Black people needed to share in the democracy their brave soldiers had fought and died for in Europe.

Adopted from NewsELA and The Newberry Library
(https://dcc.newberry.org/collections/the-1919-race-riots)
A. Now that you've read this article, fill out **BOTH** Graphic Organizers. State 2 different Main Ideas and 3 details from the text to support your Main Ideas.

Main Idea 1

Main Idea:

Detail:

Detail:

Detail:

Main Idea 2

Main Idea:

Detail:

Detail:

Detail:
B. Now that you’ve read about the Red Summer in Chicago, consider one of the acts in the article that was unfair. On a separate piece of paper, write the unfair act and then reflect on what made it unfair. Use the sentence stems to help you get started.

<table>
<thead>
<tr>
<th>Unfair Act:</th>
<th>What made it unfair?</th>
</tr>
</thead>
</table>

Activity 3: Reflecting on Chicago’s in 1963 - Even after 44 years and even into today, Chicago was and is still segregated. Now let’s read about Chicago in 1963 and the segregation in education, segregation that still exists today.

Directions: As you read the following passage, ask yourself the following questions: What is the topic of the passage? What is each section mostly about? Now that I’ve identified the topic, what is the main idea of the passage? What do I think the author is trying to say about the topic?

Why MLK Encouraged 225,000 Chicago Kids to Cut Class in 1963 By: ERIN BLAKEMORE
UPDATED: JAN 15, 2020 · ORIGINAL: MAR 14, 2018

Arydell Spinks had 12 children, but on October 22, 1963, seven of them missed school.

“If they miss tests scheduled for that day and are marked ‘truant,’ that’s just too bad,” wrote the Chicago Defender in an article about Spinks’ plan to keep her kids home from school. Spinks’ children didn’t have stomach bugs—they were boycotting school segregation in Chicago’s public schools. They were part of “Freedom Day,” a massive, but little remembered attempt to obtain educational equity in Chicago’s fragmented school district. The protest, which was supported by Martin Luther King, Jr., involved over 200,000 children and tens of thousands of adults. The protest was designed to call attention to segregation in Chicago schools. Nearly a decade
earlier, Brown v. Board of Education of Topeka had made segregated public education unconstitutional. But though Chicago schools didn’t have an overt segregation policy, they were still starkly divided between black and white students.

Schools in black neighborhoods were in much worse condition than those in white neighborhoods. Many schools were so crowded that students had to attend in shifts; by 1960, up to 33,000 black students only attended school for four hours a day so that their schools could accommodate all their enrolled students. Auditoriums, basements, cafeterias and even hallways became classrooms. And supplies were limited.

Benjamin Willis, the Chicago Public Schools superintendent, refused to address the problem. When asked why black schools were so much more run-down than white ones, writes historian John L. Rury, Willis “claimed not to know how many Black or White students were enrolled in particular schools, since the district maintained “no record of race, color or creed of any student or employee.”

Finally, in 1963, tensions boiled over. Community members began to plan a protest that would expose the conditions of the schools to one and all. A communitywide coalition of groups organized a mass boycott they called “Freedom Day.” Martin Luther King, Jr., who had spoken at the March on Washington a few months before, met with organizers and encouraged them to protest the inequality in their schools.

On the day of the boycott, 225,000 students—half of the entire school district—stayed home from school. Ten thousand people crowded around City Hall and the Board of Education building, demanding integration of the city’s schools. And organizers gave protesting kids the opportunity to attend “Freedom Schools”—ad-hoc schools offering a Civil Rights-themed curriculum. The protests made school conditions the talk of Chicago—but they didn’t make much difference to the city’s unequal school situation. Willis stayed in office until 1966, and other school board members—appointed by Mayor Richard Daley, who was often accused of trying to push African-Americans out of Chicago entirely—upheld Willis’s policies. Schools in majority-black neighborhoods continued to languish.

Adapted from History.com
A. Now that you've read this article, fill out **BOTH** Graphic Organizers. State 2 different Main Ideas and 3 details from the text to support your Main Ideas.

Main Idea 1

Main Idea:

- Detail:
- Detail:
- Detail:

Main Idea 2

Main Idea:

- Detail:
- Detail:
- Detail:
B. Now that you’ve read about “Freedom Day,” consider one of the acts in the article that was unfair. On a separate piece of paper, write the unfair act and then reflect on what made it unfair. Use the sentence stems to help you get started.

Unfair Act	What made it unfair?

Activity 4: Reflection - Part of why we learn about history is to learn from the past and correct our mistakes and behavior for the future. In order to do this, we need to think about what happened in Chicago’s past and consider how we can continue to push to desegregate (this means to continually fight against and laws or practices that oppress marginalized voices (or voices that don’t get to tell their story) of color and continue to this day.)

Directions: On a separate piece of paper, brainstorm a list of unfair practices that you read about in these articles.

A. Pick one, and create a poster that names the practice that you want changed and three ideas for changing it. Be creative! Add illustrations if you like!

Cross Content Connection:

Social Studies- City/ State History
- Read more about Red Summer, “Freedom Day” and other parts of Chicago’s history on Britannica. (library.cps.edu, username: cps; password: cps)

Math:
- Explore graphs about education segregation and other segregation in Chicago. What do they tell you?
- Search “segregation: on newsela.com
5th Grade Math Project: Building Blocks

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>70-80 Minutes</th>
</tr>
</thead>
</table>
| Grade Level Standard(s) | **Number and Operations—Fractions**
5.NF.A: Use equivalent fractions as a strategy to add and subtract fractions.
5.NF.B: Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
Measurement and Data
5.MD.C: Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. |
| Caregiver Support Option | Discussion about building a tower of blocks; discussion of approximate lengths of inches, feet, and yards |
| Materials Needed | Pencil, tape measure or ruler |
| Question to Explore | How can you use math to think and reason about objects around your home? |
| Student Directions | Reggie is a 5th-grade Mathematician. He loves to think about math as it applies to everyday objects around his home. In this project, you’ll help Reggie and his sister Rory reason about his collection of building blocks. |
Activity 1: Sorting Blocks by Color
Reggie found a box filled with colored blocks. He decided to gather some data about his blocks. Reggie noticed that all of his blocks in the box can be sorted by color. Below is a bar graph that shows the number of blocks in the box and their color.

Blocks Sorted by Color

<table>
<thead>
<tr>
<th>Color</th>
<th>Number of Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>12</td>
</tr>
<tr>
<td>Green</td>
<td>6</td>
</tr>
<tr>
<td>Blue</td>
<td>8</td>
</tr>
<tr>
<td>Purple</td>
<td>4</td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
</tr>
</tbody>
</table>

A. How many total blocks are in Reggie’s box altogether? ____________________________

B. What fraction of each colored block is in Reggie’s box? Complete the table below by providing the fraction of each block color in Reggie’s box.

<table>
<thead>
<tr>
<th>Color of Block</th>
<th>Fraction of All Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>Purple</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
</tr>
</tbody>
</table>
C. After Reggie made his bar graph, he emptied the box and found some additional purple blocks. With the new blocks that Reggie found, he now has a total of 84 blocks altogether.

How many additional purple blocks did Reggie find after he emptied the box? __________

D. What fraction of the new total of blocks are purple? ____________

Below, explain in words or a drawing how you figured this out.

Activity 2: Sorting Blocks by Size

A. The box of colored blocks that Reggie found contain different sized blocks. Reggie knows that these colored blocks can also be sorted by size. Some of the blocks are small, some are medium, and the rest are large.

Reggie measured the medium-sized blocks and determined that they are each 2 ½ inches tall. Reggie found that a large-sized block is 1.5 times as tall as a medium-sized block.

How many inches tall is one large block? ______________

Below, Write an equation that represents your thinking. Then, explain in words or draw a picture to show how you figured this out.

B. If a small block is 3/4 the height of the medium-sized block.

What is the height in inches of a small block? ______________
Below, Write an equation that represents your thinking. Then, explain in words or draw a picture to show how you figured this out.

C. How many inches taller is the large block than the small block? _______________________

Below, Write an equation that represents your thinking. Then, explain in words or draw a picture to show how you figured this out.

D. How many times larger is the larger block than the smaller block? _________________________

Below, Write an equation that represents your thinking. Then, explain in words or draw a picture to show how you figured this out.
Activity 3: Building Block Towers

A. Reggie loves to build towers with his blocks by stacking his blocks on top of each other. He often builds his towers as tall as he can until they fall over.

This morning Reggie built a tower of blocks using one large block, one medium block, and two small blocks.

How tall in inches was Reggies tower? ____________________________

Below, Write an equation that represents your thinking. Then, explain in words or draw a picture to show how you figured this out.
B. Reggie is determined to build a block tower that is about one foot tall. Which blocks can Reggie use to build a tower that is one foot tall or as close to one foot as possible?

Complete the table below to show three different ways to build a block tower that is one foot tall or as close to one foot as possible.

<table>
<thead>
<tr>
<th>Reggied's One Foot Tall Towers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower #1</td>
</tr>
<tr>
<td>Blocks that Reggie Used</td>
</tr>
<tr>
<td>Total Height of Tower</td>
</tr>
</tbody>
</table>

C. Reggie built a tower with four large blocks, three medium blocks, and four small blocks.

How tall in inches is Reggies block tower? ________________

Reggie is 4ft 2in tall. Is this block tower taller than Reggie?

Below, explain in words or draw a picture to show how you figured this out.
D. What blocks could Reggie use to build a tower that is exactly as tall as he is?

Below, draw a picture to show how you figured it out.

E. Ask a family member to measure your height with a ruler or tape measure. If you don’t have a ruler or tape measure, ask your family member to estimate how tall you are. Which blocks would you use to build a tower that is as tall as you? How many of each block would you use?

Activity 4: Reggie and Rory

A. Reggie and his sister Rory love to have block building competitions. Reggie built a tower that was made with eleven small blocks. Rory built a tower using five large blocks.

Whose tower is taller? ____________ How many inches taller? ________________

B. Last winter, Reggie and Rory visited the Willis Tower in downtown Chicago. Rory remembers that the height of Willis Tower is 1,450 ft. Rory says that this is about 120 inches tall AND that she could build a tower of blocks as high as the Willis Tower with 48 medium sized blocks.

Below is how Rory figured this out.

1450 feet ÷ 12 inches = 120.83 So the Willis Tower is 120 inches tall

120 inches ÷ 2.5 inches = 48 So you need 48 blocks
Reggie says that Rory’s answer is not reasonable. Why does he say this?

C. How many medium sized blocks, which are 2 ½ inches tall, would it take to build a tower as tall as the Willis Tower? Show your work in the space below.

Activity 5: Estimating Volume

A. Reggie has been learning about 3-dimensional solids in his 5th grade math class at school. He knows that all of the blocks that he found are cubes. Since all of the blocks are cubes, he knows that the length, width, and height of each block are equivalent. He also knows that he can find the volume of each block by multiplying the length, the width, and the height of each block. Reggie uses the formula below to find the volume of his blocks.

\[V = l \times w \times h \]

Reggie now knows that the length of each edge of the small block is 1 \(\frac{7}{8}\) inches. He decides that each edge of a small block is about 2 inches long. To estimate the volume of the small block, he writes the equation:

\[2\text{ in} \times 2\text{ in} \times 2\text{ in} = 8\text{ in}^3 \]

Reggie estimates that the volume of a small block is 8\(\text{in}^3\).

Is the actual volume of the small block larger or smaller than the estimate? ________________

Explain in words how you know.
B. The larger block is 3 ¾ inches in height.

Use an estimation strategy similar to Reggie’s to estimate the volume of the large cube. Show your work below.

C. Rory builds a tower using four small blocks.

Estimate the total volume of Rory’s block tower. Show how you figured this out.
D. Below is a picture of a structure that Rory built. She built this structure with one large block and several small blocks.

Estimate the total volume of Rory’s block structure. Below, show how you figure this out.

![Structure Diagram]

E. Rory notices that a large block has a volume 8 times the small block. When she asks Reggie why that is, he draws this picture:

![Large and Small Blocks Diagram]

How might Reggie explain his picture to Rory?
5th Grade Science Project: Reading by Starlight

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>70-80 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level</td>
<td>Standard(s): 5-ESS1-1. Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth.</td>
</tr>
<tr>
<td>Caregiver Support</td>
<td>Option: Engage in discussions with the student around the questions embedded in this project (siblings and other members of the household can be engaged in the dialogue as well).</td>
</tr>
<tr>
<td>Materials Needed</td>
<td>● Paper and pencil (Flashlight optional)</td>
</tr>
<tr>
<td>Question to Explore</td>
<td>If the sun is a star, why does it appear so much brighter than all other stars?</td>
</tr>
<tr>
<td>Student Directions</td>
<td>Each activity has directions for you to follow.</td>
</tr>
</tbody>
</table>

Part 1: My Initial Ideas (10 minutes)

Yessica was learning about stars like the Sun, Sirius, and Betelgeuse in school. She learned that Sirius gives off about 25 times as much light as the Sun and appears as one of brightest stars we can see from Earth in the night sky. And Betelgeuse gives off more than 150 000 times as much light as the Sun, but Sirius looks 60 times brighter than Betelgeuse!

Yessica wondered to herself, “If those stars are so bright, why can’t I see the pages of my book when I try to read at night? To see the pages at night, I need to turn on a light. On the other hand, I have no problem seeing the pages of my book when it’s daytime and the Sun is in the sky.

1. Why do you think the Sun (which is a star) allows Yessica to see the pages of her book during the day, but Sirius and Betelgeuse (also stars) don’t allow her to see the pages of her book at night? On a sheet of paper, draw (and label) a picture to help you explain your ideas.
2. What do you notice about the brightness and size of the street lights? Write your ideas on a sheet of paper.

Yessica imagines that all of the light bulbs used in the street lights are the same so shouldn’t they all look the same size and just as bright? Being curious, Yessica set up a flashlight and measured how bright it was at several different distances with a device called a lux meter which measures how much light shines on a given surface area. Her results are in the table below. (Optional: You can try this experiment at home qualitatively by holding a piece of white paper up in the path of a flashlight beam and noticing how the brightness changes as you move the paper away from the flashlight.)
<table>
<thead>
<tr>
<th>Distance between flashlight and lux meter (m)</th>
<th>Illuminance (relative brightness) at that distance (lx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>200.</td>
</tr>
<tr>
<td>1.0</td>
<td>50.0</td>
</tr>
<tr>
<td>1.5</td>
<td>22.2</td>
</tr>
<tr>
<td>2.0</td>
<td>12.5</td>
</tr>
<tr>
<td>2.5</td>
<td>8.00</td>
</tr>
<tr>
<td>3.0</td>
<td>5.56</td>
</tr>
<tr>
<td>3.5</td>
<td>4.08</td>
</tr>
<tr>
<td>4.0</td>
<td>3.13</td>
</tr>
</tbody>
</table>

Yessica knows that there are many planets in our solar system. She wonders if the Sun would look different from each planet. [Source: Amplify Science - How Big Is Big? How Far Is Far]

5. Using the data from Yessica’s experiment with the flashlight and lux meter and the diagram above showing relative distances between the planets and the Sun, draw and describe what you think the Sun would look like from different planets below:

What the Sun looks like from Earth:

What the Sun looks like from Mercury:
Part 3: Let’s Read About It! (35 minutes) - How Big Is Big? How Far Is Far? [Source: Amplify Science - How Big Is Big? How Far Is Far] How big is big? Everyone knows whales are big. A beluga whale is longer than a car, and weighs about 1,000 kilograms (more than 2,000 pounds). That’s big. Or is it?

Look at a blue whale, which is the biggest animal that has ever lived on Earth. If you lined up six cars, they would be about as long as a blue whale. A blue whale can weigh up to 200 times more than a beluga whale!

What’s big? It depends. A beluga whale is big, but it would take about five of them lined up to be as long as a blue whale. Whether you can call something “big” depends on what you’re comparing it to. It’s the same in space. . . .

For example, think about how big the Moon is. It’s hard to tell what size the Moon is when you look at it in the sky, but if you went to the Moon and stood on the surface, it would seem huge. A walk around the Moon would be more than 10,000 kilometers (about 6,000 miles) long, which is about the distance from New York to California and back! At the same time, the Moon is small, much smaller than Earth. In fact, you would need to line up four Moons side by side to be about as wide as Earth.

The astronauts who visited the Moon needed this rover to help them travel to the places they wanted to study, because it was too far to walk.
Imagine two kids are arguing about the size of Earth, and one kid says Earth is big, while the other says Earth is small. Who is right? Is Earth big or small? Actually, they are both right, because it all depends on what you’re comparing Earth to. Earth is huge compared to a blue whale, a house, a city, or even a whole country.

- There are about 200 different countries on Earth.
- There are thousands of cities on Earth.
- It would take more than a million blue whales lined up to stretch around Earth.

Look at the data table below to see the sizes of the planets in our solar system. If you compare Earth to other planets in our solar system, it doesn’t seem so big anymore. Is Earth a small planet or a big one? Which planets make Earth look big, and which ones make it look small?

<table>
<thead>
<tr>
<th>Planet</th>
<th>Diameter in Kilometers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>4,880</td>
</tr>
<tr>
<td>Mars</td>
<td>6,790</td>
</tr>
<tr>
<td>Venus</td>
<td>12,100</td>
</tr>
<tr>
<td>Earth</td>
<td>12,760</td>
</tr>
<tr>
<td>Neptune</td>
<td>49,530</td>
</tr>
<tr>
<td>Uranus</td>
<td>51,120</td>
</tr>
<tr>
<td>Saturn</td>
<td>120,540</td>
</tr>
<tr>
<td>Jupiter</td>
<td>142,980</td>
</tr>
</tbody>
</table>

*All diameters are approximate

Jupiter is the biggest planet in our solar system, and its diameter is about 11 times bigger than Earth’s. That means if you lined up 11 Earth-sized planets side by side, they would be about as wide as Jupiter. Jupiter really is big, right? It might seem that way, but there’s something in our solar system that makes even Jupiter look small . . .

That’s right, it’s the sun! The sun is so big that it makes Jupiter look small, and it makes Earth look tiny. In fact, the sun’s diameter is almost 10 times the diameter of Jupiter and about 110 times the diameter of Earth. The sun is the biggest object in our solar system . . . but our solar system is only a small part of the universe. Is there anything out there that would make the sun look small? When you look out into the night sky, you may see many stars. They look like tiny specks of light . . . but are they really tiny?
Arcturus is one of the brightest stars you can see in the sky on a summer night. If you lined up 25 stars the size of the sun, they would be about as wide as Arcturus, which means Arcturus is definitely big. By now, you probably know that there’s always something bigger out there. On winter nights, you can see a bright star called Betelgeuse. You would have to line up 40 stars the size of Arcturus (or 1,000 stars the size of the sun) to be as wide as Betelgeuse. Is the sun big? As the only star in our solar system, it seems big, but when you find out how big some other stars are, the sun doesn’t seem so big anymore. Let’s look at some data on different star diameters.

An artist created this image showing what the huge star Betelgeuse might look like if you got close to it. If the sun were next to Betelgeuse, it would look like a tiny speck.

We’ve discovered that things in space are very big. Things in space are also very far apart . . . but how far is far? Who lives close to your school, and who lives far away? In places where people’s homes are close together, many students live close to school—sometimes just a block or two away. In these places, people might say students live far from school if they have to walk more than half an hour to get there. In places where people’s homes are farther apart, some students may have a long ride in a car or a bus to get to school, and a half-hour walk to school would not seem far at all. Do you live close to your school or far away? That depends on what you’re comparing the distance to. It’s the same in space. . . .

Distance in space depends on what you’re comparing. Earth is about 150 million kilometers (93 million miles) away from the sun. That’s far! It makes sense to say Earth is far away from the sun. Or does it?
Is the sun near Earth, or far away? From our perspective the sun is far from Earth, but it is extremely close for a star. Compared to the sun, the other stars are much farther away. Besides the sun, the next closest star is called Proxima Centauri. It would be a very long ride to get to Proxima Centauri, even in the fastest spacecraft that exists. The fastest spacecraft that has ever been launched travels about 50,000 kilometers (31,000 miles) every hour. Even at that speed, it would take almost 90,000 years to get to Proxima Centauri.

There is something that travels much faster than any spacecraft: light. In a year, light travels about 10 trillion kilometers (6 trillion miles). That is the distance astronomers call a light-year. A light-year is not a long time; it is a huge distance. It takes 4 years for light to travel from Proxima Centauri to Earth, so we say that Proxima Centauri is 4 light-years away. A light-year is such a long distance that the distance from Earth to the sun is only a tiny fraction of a light-year. Here’s a data table showing the distance from Earth to a few different stars.

<table>
<thead>
<tr>
<th>Star</th>
<th>Distance from Earth in Light-Years*</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.000016</td>
</tr>
<tr>
<td>Proxima Centauri</td>
<td>4</td>
</tr>
<tr>
<td>Sirius</td>
<td>9</td>
</tr>
<tr>
<td>Arcturus</td>
<td>37</td>
</tr>
<tr>
<td>Polaris</td>
<td>433</td>
</tr>
<tr>
<td>Betelgeuse</td>
<td>543</td>
</tr>
<tr>
<td>Deneb</td>
<td>3,230</td>
</tr>
</tbody>
</table>

*All distances are approximate.

It is hard to visualize how far away stars are. A long time ago, people thought that all the stars were the same distance from Earth. They thought the stars were attached to an enormous sphere that surrounded Earth like a giant shell, and the stars on the sphere surrounded Earth in all directions. They
People were right that the stars are all around Earth in every direction. You can imagine why they thought that the stars were stuck to something. After all, we always see the stars in the same arrangements in the sky. However, there is no shell around Earth, and stars are not all the same distance from Earth. Even stars that look close to each other can be different distances from Earth. For example, the three stars that people call Orion’s Belt look like they are lined up side by side, but if you saw them from somewhere else in space, you would see that they are spread far apart, and each of the three stars is a different distance from Earth.

In this book, you have seen a diagram representing distances in our solar system. You can use Diagram A to compare how far Earth and other planets are from the sun. You have also seen a diagram representing distances beyond the solar system. You can use Diagram B to visualize the distance between Earth and the nearest star besides the sun. It might seem like a good idea to end the book with a diagram comparing distances inside the solar system and beyond the solar system at the same time, but there’s a problem with trying to do that. The distance between Earth and the sun is 150 million kilometers. If we make a diagram that represents that distance as 1 centimeter, how far away on the page do we have to put a picture of Proxima Centauri? We would have to put Proxima
Centauri 2.7 kilometers away—about 1.5 miles! Proxima Centauri is about 270,000 times farther away from Earth than the sun is. There is no way to fit a diagram comparing those distances in any book that has ever existed—the diagram (and the book) would have to be much too big. Are Earth and the sun close together? Is Earth small? Are the stars far away? Is there anything even farther than the stars? Big or small, close together or far apart . . . whichever way you think about it, it makes sense!

Glossary
- astronomer: a scientist who studies stars, planets, and other objects in the universe
- data: observations or measurements recorded in an investigation
- diagram: an illustration that shows how something works or what its parts are
- diameter: the distance across a circle or sphere measured from one side, through the center, to the opposite side
- Earth: the planet we live on
- light-year: a unit of measurement that is equal to the distance light travels in a year
- orbit: to move in a regular path around something
- solar system: the sun, the planets that orbit the sun, and other objects that orbit the sun
- sphere: a ball-shaped object
- star: a huge object in space that gives off heat and light
- sun: the only star in our solar system
- visualize: to make a picture in your mind using information from different sources
- year: the length of time it takes for Earth to orbit the sun once

After reading, answer the following questions on a piece of paper or in your notebook:
1. How far can light travel in a year?
2. Rank the following stars from closest to Earth to furthest away: Betelgeuse, Proxima Centauri, Sirius, and the Sun.
3. Rank the following from smallest to largest: Betelgeuse, blue whale, Jupiter, the Earth, Mercury, Sirius, and the Sun.
4. What have you learned about the Sun, Sirius, and Betelgeuse from this reading?
5. This photograph is an optical illusion: it was designed to make things appear different than they are. The people in the photograph are about the same height, but the person on the right looks so much shorter? One of the tricks used in making this photo is that the two people are not the same distance from the camera. Who do you think is closer to the camera and why?

Part 4: Applying My Learning to the Phenomenon (15 minutes)
Yessica has learned about how much light Betelgeuse, Sirius and the Sun give off, how far away they are from the Earth, and how large each one is. She also knows that light from the Sun is bright enough to read by. She can’t say the same for light from Sirius or Betelgeuse.
1. Explain why the Sun (which is a star) allows Yessica to see the pages of her book during the day, but Sirius and Betelgeuse (also stars) don’t allow her to see the pages of her book at night?
2. Draw (and label) a picture to help you explain your idea.
Grade 3-5 Social Science Project: Uplifting Actions

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 70-80 minutes (average of 15-20 mins per activity)</th>
</tr>
</thead>
</table>

| Grade Level Standard(s) | SS.IS.3.3-5: Determine sources representing multiple points of view that will assist in answering essential questions.
SS.IS.4.3-5: Gather relevant information and distinguish among fact and opinion to determine credibility of multiple sources.
SS.IS.5.3-5: Develop claims using evidence from multiple sources to answer essential questions
SS.IS.6.3-5: Construct and critique arguments and explanations using reasoning, examples, and details from multiple sources. |

| Caregiver Support Option | Notes on the structure:
- Activities are designed to be done in order - each one builds on the other so you should not skip activities
- Activities are an average of 15-20 mins each. More than one can be done in a day.
Before giving the activities to students, caregivers might:
- spend time reading and discussing the “student directions” together. Encourage them to ask any clarifying questions.
- When reading the texts, students should circle or underline any unfamiliar words so you both can define them together
In this particular lesson, it’s important to note that:
- Students should recognize that all actions, big or small, that help people can be appreciated.
- Caregivers may want to provide examples of things that other community members have done previously. |

| Materials Needed | Writing tool, paper |

| Question to Explore | How can we take positive action to support and encourage our community during difficult times? |

| Student Directions | During difficult times, people have always found ways to support and encourage each other by taking actions that spread joy and make others feel less alone. In this week’s inquiry, students investigate the ways that members of their community and others around the world are performing uplifting actions to bring joy to and support each other. Throughout the week, they’ll use their learning to design and perform their own uplifting action that supports their community. |

| Safe “Social Distancing” Practices | Though the majority of the examples of taking “uplifting action” in this lesson are virtual and meant to be done within the home, it’s always important to remember to |
practice safe “social distancing” when you are out in your community. Here are some key tips for practicing safe “social distancing”:

- Cover your mouth and nose with a cloth face cover when around others
- Stay at least 6 feet (about 2 arms’ length) from other people
- Do not gather in groups
- Stay out of crowded places and avoid mass gatherings
- Clean hands often using soap and water or alcohol-based hand sanitizer

These “social distancing” practices come from the Center for Disease Control and Prevention

For the most up-to-date COVID-19 orders put out by the City of Chicago please visit: https://www.chicago.gov/city/en/sites/covid-19/home/health-orders.html

Day 1 (Activity 1): Exploring Creative Responses (15-20 min)

<table>
<thead>
<tr>
<th>This week we’re thinking about the question: "How can we support and encourage our community during difficult times?"</th>
<th>Your challenge this week: Your challenge this week is to design and perform an Uplifting Action to support and encourage your community.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today you will:</td>
<td>You will need:</td>
</tr>
<tr>
<td>● Look at photographs to see what some people are doing to encourage their community</td>
<td>● Paper or notebook</td>
</tr>
<tr>
<td>● Explore challenges faced by your community</td>
<td>● Pencil, pen, or other writing tool</td>
</tr>
<tr>
<td>● Think about how your special skills and talents could help your community</td>
<td>● “Brainstorming Template” handout (optional)</td>
</tr>
</tbody>
</table>

Let’s Get Started!

A. THINK - Look at this picture of someone’s front door.

- How can creativity help us to encourage and support others even though we’re apart?

New Word: **encourage**: give someone support, help them to feel hopeful

B. EXPLORE - In this moment around the world, many people are being asked to stay apart to protect their own health, as well as the health of others.

The coronavirus is an illness that began spreading across the globe in December 2019. The virus has recently changed everyday life.

For many people, schools and businesses are closed. People are practicing social distancing to avoid spreading the virus and keep themselves and others safe.
People are separated, but have found creative ways to connect with others.

New Word: **social distancing**: Rules that have been made to prevent people from having close contact with others. This includes staying 6 ft away from other people (except family members) and avoiding being in public places or large groups.

Look below at some examples of creative and safe ways people around the world are encouraging and uplifting their communities even though they are separated.

People find ways to connect even though they can’t meet face-to-face. Some use video calls and social media to stay in touch with friends and family and to reach out to their communities.

In this picture, music students stay connected to each other by doing what they love, playing music and singing together, but this time it’s virtually. Their hope is that their beautiful music will bring joy and uplift others.

Inspired by people in Italy who started singing on their balconies and out windows to bring joy to each other, neighbors in cities around the world are connecting in this way, too.

OPTIONAL: In this video youtu.be/z5CrSclHAuE, neighbors in Germany stay connected and bring joy to each other by singing and playing instruments to the Italian song “Bella Ciao” on their balconies of their apartments.

Many authors, illustrators, actors and other artists are bringing joy to others sharing their talents from home right now. This is a message from LeVar
Burton, from the tv show “Reading Rainbow.” He is using his passion for reading books to share a variety of stories over the internet.

In many places, school districts and community centers are working hard to provide lunches for students who rely on schools for meals.

In this picture, staff members add an extra surprise to the lunches by including heartwarming notes inside to encourage and uplift these students.

In each of the examples above, people are using their passions (what they love) and their skills (what they are good at) to encourage and uplift others.

C. DO - Your challenge this week is to create your own Uplifting Action to support, encourage, and bring joy to others. Today, you will brainstorm ideas!

Brainstorm your passions, skills, needs, and limits on a piece of paper (or use the “Brainstorm” handout if you like):

- **Your PASSIONS:** What do you love to do? Do you enjoy music, art, humor, poetry, or do you have a different passion?
 - Write down 3 passions that you have.

- **Your SKILLS:** What are you good at? What special skills and talents do you have? Can you sing? Are you funny? Good at drawing or organizing events? What else?
 - Write down 3 skills that you have.

- **NEEDS:** What does your community need right now? Do you think people need love, humor, physical activity, fun? What else?
 - Write down 3 needs that your community has

- **LIMITS:** You will need to work within your limits. What can you do when your movement and access is limited? Think about
 - Places: Right now, I can go...
 - Materials and Resources: Right now, I have

DIG DEEPER - Read this article to learn more about how people are finding ways to connect and be part of a community: [Why Tough Times Can Create Better Neighbors](#)

In a neighborhood in Boston, Massachusetts, residents came from their apartments for a flash mob on March 14. The neighbors waved to each other and joined in singing the Beatles song “Let it Be.” One of the residents, a professional musician, played for a sing-along of another song.

During their show, they stayed more than 6 feet apart because of COVID-19, (short for coronavirus disease 2019). The coronavirus is a flu-like illness that began in China and has been spreading across the globe since December 2019. The activity not only brought community members to their feet to dance, it brought many to tears.
Similar scenes are playing out in neighborhoods around the world quarantined because of coronavirus. In Wuhan, China, blocks of apartment buildings chanted, “Keep up the fight.” In Italy, people on lockdown lean out of windows and balconies with tambourines and accordions to sing. On March 14, people in Spain began clapping together to cheer health care workers.

Reaching Out To Strangers - As the practice of “social distancing” burgeons, people are finding ways to meet even though they can’t meet face-to-face. Social distancing is the practice of keeping away from crowds and public places to slow down the spread of a disease. They’re using video calling and social network connections. However, people aren’t just staying in touch with friends and family. The global crisis has brought a sense of shared humanity that’s causing people to reach out to their communities. In the middle of the outbreak, there is kindness among strangers.

“In times of great stress, helping others is a powerful way to reassert control in a moment where many of us feel helpless,” said Jamil Zaki. He is the author of “The War for Kindness: Building Empathy in a Fractured World.” “Kindness toward others actually can be a great source of healing.”

One of the ways that millions of people are being kind to others is by staying away. They are practicing social distancing. For many, the motivation is that they want to protect others. There are models for that impulse, said Jill Suttie, a psychologist at the Greater Good Science Center at the University of California, Berkeley. A study demonstrated the most effective way for hospitals to motivate health care professionals to wash their hands isn’t by noting the importance of protecting themselves from disease. It’s stressing how it protects patients.

To be sure, not everyone is acting kindly. Fights have broken out in supermarkets over the last remaining item on a shelf. Some are hoarding hand sanitizer, face masks and toilet paper. Many ignored pleas to practice social distancing, gathering at restaurants and other public places. In response, governors in several states shut down restaurants except for delivery and takeout.

Kindness Can Go Viral, Too - Even so, instances of selflessness have become common. Professional basketball players have donated money to cover the salaries of arena workers affected by the suspension of the season. Other acts of kindness include providing food for children who are out of school.

Witnessing acts of kindness inspires others, said Zaki. He is a psychologist at Stanford University in California. In 2016, he published an article in Scientific American, “Kindness Contagion,” that included findings of studies about how people “catch” generosity from others. This desire to help others intensifies during times of crisis. It crosses lanes of class, race and other divisions.

For example, when Germans began retreating behind closed doors earlier in March, Molly Wilson realized she didn’t know the elderly people in her Berlin neighborhood. Wilson and a neighbor posted flyers on mailboxes and trash cans on their street. Their notes offered to go shopping for those who felt unable to go outside.

Wilson also posted her note on Twitter to inspire others. “We need to do something off-line in order to let old people know that it’s OK to reach out for help.”
When in-person activity is limited, technology can help. People are using social media platforms to post offers to help strangers. For example, Jerry Xu, a tech professional in San Francisco, California, used the app NextDoor to volunteer his services. NextDoor connects members to others in their area.

Beyond Offering A Cup Of Sugar - To Marc Dunkelman, author of "The Vanishing Neighbor," these responses to the coronavirus crisis contrast with normal times. Most people's acquaintances resemble a model like the rings of Saturn. The innermost bands represent the closest connections. Each outer loop becomes more distant.

Over the past 50 years, people have spent more time on close friends and family. People have also spent more time in the outermost rings. Those include online acquaintances they don’t know but with whom they share interests such as sports, hobbies or politics.

People have largely let go of rings in the middle, said Dunkelman. Those are the rings including neighbors and groups such as bowling leagues or Boy Scouts. Now the coronavirus offers the opportunity for greater local connection.

On a separate piece of paper answer the following questions.

1. What do you think the author's purpose was for writing this text? Why? Support your response with specific details from the text.
2. What are some ways that people are finding to connect even though they can't meet face-to-face?
3. What do these strategies (Actions? Acts? Ways of connecting) have in common?
4. How have connections become even stronger between communities during this time when people are far apart?

Day 1: Brainstorm

<table>
<thead>
<tr>
<th>PASSIONS: What do you love? Do you enjoy music, art, humor, poetry, etc.? Write down 3 passions.</th>
<th>SKILLS: What special skills and talents do you have? Can you sing? Are you funny? Are you good at drawing? Write down 3 skills.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ___________________________</td>
<td>1. ___________________________</td>
</tr>
<tr>
<td>2. ___________________________</td>
<td>2. ___________________________</td>
</tr>
<tr>
<td>3. ___________________________</td>
<td>3. ___________________________</td>
</tr>
</tbody>
</table>
COMMUNITY NEEDS:
What does your community need right now (love, humor, physical activity, fun)? Write down 3 needs.

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
</tr>
</thead>
</table>

LIMITS:
You will have to work within your own limits. Consider:
- What places can you get to right now?
- What materials do you have right now?

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
</tr>
</thead>
</table>

Day 2 (Activity 2): Planning Your Action (15-20 min)

This week we’re thinking about the question: "How can we support and encourage our community during difficult times?"

Your challenge this week: **Your challenge this week is to design and perform an Uplifting Action to support and encourage your community.**

Today you will:
- Explore an example (called a case study) of an uplifting action
- Create an action plan for your own Uplifting Action that encourages and brings joy to others in your community

You will need:
- Paper or notebook
- Pencil, pen, or other writing tool

Let’s Get Started!

A. THINK

See
What observations can you make about this image?

Think
What do you think this means? What evidence makes you think that?

Wonder
What do you wonder about this?
Miss You, Love You, Wash Your Hands (MYLYWYH) is a community art project started by artist and teacher Kyle Monhollen in Davis, CA.

The idea for this project was Kyle’s wish to give each person “a simple reminder that you are missed and loved, and that the people who miss and love you want to keep you safe.”

To do this, Kyle created hundreds of signs with the MYLYWYH message. Each sign has one of 50 different QR codes. When you scan the code, it plays a song from a playlist designed to bring connection and joy. Kyle posted the signs on fence posts, benches, and trash cans along community paths for walkers and bikers practicing social distancing!

OPTIONAL: In this video, Kyle shares a few words about how and why he created his public art. (vimeo.com/404758655)

The project has inspired others. MYLYWYH posters have gone up in other Northern California towns, as well as in places as far as Lexington, KY, Portland, OR, and New York City. Kyle is making his work freely available to anyone who wants to bring messages of kindness and connection to their own community.

Think or discuss:
- How did Kyle respond to what is happening in the world?
- How did he use his passions (what he loves) and his skills (what he’s good at) to encourage and uplift others?
- How did he perform his action using things he had available and following the rules of staying separate from others?

Young people are making a difference too! Look at the pictures below of other uplifting actions taken by young people across the country.
<table>
<thead>
<tr>
<th>Can you guess what these kids think their community needs right now?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What passions and skills do you think these young people are using?</td>
</tr>
<tr>
<td>What do you think their limits might be? How did they address these limits?</td>
</tr>
</tbody>
</table>

C. DO - Remember your challenge this week: Design and perform an uplifting action to support and encourage your community.

Today, you will create an Action Plan to help you meet your challenge and perform your Uplifting Action!

- Look at your brainstorm from Day 1.
 - Circle 1 or 2 favorite passions (what you love).
Day 2: Action Plan

I will use my [love for or my skill at] ________________________________
(Circle one.)

to take the uplifting action of __
(What are you going to do? Fill in your action here.)

so I can meet my community’s need for ____________________________________
(What do you think your community needs?)

● Now draw your idea on a separate piece of paper!!

DIG DEEPER - OPTIONAL: Want to find out how to overcome limitations and create something amazing? Check this out! Watch Happy B-Day Sam-I-Am, 50 Years of ‘Green Eggs and Ham to learn more about how limitations can sometimes fuel creativity (youtu.be/jnvQqK_3d80)

Day 3 (Activity 3): Evaluating the Work (15-20 min)

This week we’re thinking about the question: "How can we support and encourage our community during difficult times?"

Your challenge this week is to design and perform an Uplifting Action to support and encourage your community.

Today you will:
● Reflect on your progress
● Make a plan to improve your work

You will need:
● Your work from previous activities
● Paper or notebook
● Writing tool

Let’s Get Started!

A. THINK - You’ve already created your Action Plan describing your uplifting action. When someone sees your plan, they should see:
● You are using a passion (what you love) and a skill (what you’re good at) to do something that encourages and brings joy to your community based on what they need
● It’s possible to carry out your plan
● A sketch that shows what your action will be, look like, or do
C. DO - Your challenge this week: Design and perform an uplifting action to support and encourage your community. Today, you will explore your action plan to check if you are meeting your goal.

Pencils down! This is a thinking exercise! Look at your action plan and ask:

- Does the plan use a passion (what you love) and skill (what you’re good at) to do something that brings joy to your community based on what they need?
- Does it seem possible to execute this plan with the limitations?
- Does the sketch represent the proposed action?

Wait, still don’t touch your work! First, complete one of these sentences on a separate piece of paper or directly on your action plan:

- I will add…
- I will try…
- I will adjust…

Now, make the changes you explained above on your action plan! Be sure to save your action plan so you can use it to guide you when you perform your uplifting action.

Day 4 (Activity 4): Taking Your Action (15-20 min)

This week we’re thinking about the question: "How can we support and encourage our community during difficult times?"

Your challenge this week: Your challenge this week is to design and perform an Uplifting Action to support and encourage your community.

Today you will:
- Take action to encourage and uplift your community.

You will need:
- Paper or notebook
- Pencil, pen, or other drawing tool
- Your work from previous activities
- Coloring materials (optional)
Let’s Get Started!

A. THINK - Remember your action plan? That’s when you said:
- I will add...
- I will try...
- I will adjust...

Decide or discuss: What will you do next to finalize your work?

B. EXPLORE - Check out some Uplifting Actions by other students:
- What changes did this person make when they took action?
- How did this person execute their plan?

Action Plan

- Use your passions and what your community needs to brainstorm ideas for actions you can take within your limits.
- Draw pictures for reference.
- Draw pictures for information.

- Circle your favorite idea.

My Uplifting Action Plan

I will use my passion for dance and art (my passion or skill) to create a dance video in order to bring love to my community.

Final Draft

We all love you in our neighborhood. In our community.

Action Plan

- I will use my love for dance and art (my passion or skills) to create an obstacle course in order to bring fun and happiness to my community.

Final Draft

Jump over the

38
C. DO - Today, you will work to make your “Uplifting Action” really happen!
Get out your action plan and any other materials from previous activities. Think about your action plan and decide:

- How will you take action?
- Do you need supplies and/or an adult to help you?

Get to work doing, creating, or performing your Uplifting Action!

Day 5 (Activity 5): Reflecting and Sharing (15-20 min)

<table>
<thead>
<tr>
<th>This week we’re thinking about the question: "How can we support and encourage our community during difficult times?"</th>
<th>Your challenge this week: Your challenge this week is to design and perform an Uplifting Action to support and encourage your community.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today you will:</td>
<td>You will need:</td>
</tr>
<tr>
<td>- Think about how your Uplifting Action encourages and supports your community.</td>
<td>- Your work from previous activities</td>
</tr>
<tr>
<td>- Find a way to share your final work</td>
<td></td>
</tr>
</tbody>
</table>

Let’s Get Started!

A. THINK - What if everyone took action like you did this week?

B. EXPLORE - Look at your finished Uplifting Action. Reflect on your action in writing. Write it out on a piece of paper or use the “Reflection” handout.

- How do you hope others feel when they experience your work?
- What challenges did you encounter? How did you overcome them?
- How might your work inspire others?
Day 5: Reflection

How do you hope others will feel when they experience your work?

What challenges did you encounter? How did you overcome them?

How might your work inspire others?

C. DO - Now it’s time to share your work with others! Here are some ideas for connecting with others:

● Share with a family member and…
 ○ Help them to create their own.
 ○ Ask them if they have comments, questions, or a connection to your work (or use the “Sharing” handout to get a written response).
● Ask an adult to help you share your work online with the #inquirEDtogether hashtag.
● Keep photographs and other evidence from your Uplifting Action somewhere safe. You can look back on these later to remember this unique moment in history

DAY 5 - Sharing Handout

Please take a look at my work and fill this out. Thank you! I have a… (circle one)

comment: question: connection:
Cross Content Connection: By examining how community members can lift each other up during tough times, and by developing your own plan to do so, you are using many social science skills, but also so much more! There are so many connections to math and science that you can continue to explore. Here are a few ways to extend your learning and make connections to other subjects.

- **Math:** Create word problems for younger students to use that would involve the distances you traveled to help people, the amount of money you spent on supplies, and/or the lasting impact of your project! Help the younger students practice their math facts by designing a few questions that include the use of your community outreach.

- **Science:** Research a different area of the world that a friend or family member lives. Describe the climate and physical features of that area. How might those things impact the ways in which your community outreach project gets implemented if you lived there? What could they do similarly or different?