Hello Students,

This resource packet includes multiple projects that you can work on independently at home. Each project can be completed over multiple days, and the projects can be completed in any order. These projects are standards-aligned and designed to meet the Remote Learning instructional minutes guidelines by grade band.

Use the table of contents on this page to navigate through the project packet.

- 7th Grade Literacy Project: Perspectives 1
- 7th Grade Math Project: At the Fair 4
- 7th Grade Science Project: What caused the base of the light pole to decay? 8
- Grade 6-8 Social Science Project: Celebrating Everyday Heroes 23
7th Grade Literacy Project: Perspectives

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 120-130 minutes</th>
</tr>
</thead>
</table>
| Grade Level Standard(s) | RL.7.2 Determine a theme or central idea of a text and analyze its development over the course of the text.
RL.7.6 Analyze how an author develops and contrasts the points of view of different characters or narrators in a text
W.7.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. |
| Caregiver Support Option | Caregivers can read and discuss the students’ writing and discuss the writing prompts. |
| Materials Needed | Lined paper
Pen/pencil |
| Question to Explore | How does meaning change when perspective changes?
How can considering other perspectives help me understand myself, others, and the world? |
| Student Directions | In this task, you think about the importance of perspective. Then, you will brainstorm or draft a piece of writing. Finally, you will choose to illustrate your draft or keep writing - this time about your experiences. |

Activity 1: Understanding Perspective

A. When writers begin to write, they make a decision about point of view. They decide if they are going to write in first, second, or third person. Using a first person (“I”) perspective is just as important as writing in any other perspective. Perspective is how someone sees a situation, their feelings about a situation, and their opinions of a situation. When we read, we see the story from the perspective of the narrator, which is whoever is telling the story at a particular point. Sometimes the narrator is a character in the story. Some stories have more than one narrator, so we get different perspectives on the story. As in life, there are always at least two sides to every story, which is why people go to court and why teachers ask each student involved in a disagreement to tell his or her side of a story. We might also ask, what in the narrator’s culture and experience help shape and inform how they tell the story?
With these ideas in mind, on notebook paper explain how the perspectives might be different in the examples below. Use the sentence frame below if it is helpful.

A teacher/mouse/brother might think...while a student/human/sister might think...

- A teacher and a student
- A mouse and a human
- A brother and a sister

B. Choose one of the examples above and write a few sentences from each of the two perspectives. In other words, step into the shoes of the speaker and write their thoughts. For example, if a human and a mouse are both in a kitchen, what would each think, feel and do? Use first person and write from each perspective.

Activity 2: Understanding Perspective

A. Remember: When we read a story written in first person

- we see it from the perspective of the narrator, who may also be a character in the story.
- Different characters in the story have different perspectives on the events.
- Awareness of different perspectives is a type of critical thinking.

One unique way to explore perspective is to write from the perspective of an inanimate object. That means a thing that is not alive, such as a rock or a book. You will now pick an object and write--"A Day in the Life of a ______"--a story from the object’s perspective. You can choose anything non-living. It might be fun to write from the perspective of a chair, a phone, a washing machine at the laundromat, gym shoe, or a tree. It is your choice! Start with a brainstorm by answering these questions on notebook paper:

- What is the object?
- Where is this object found?
- When is this object used?
- Who uses this object?
- What are some of the things this object observes during the day?
- What are some of the things this object does during the day?
- How does the object feel about where it is?
- How does the object feel about who uses it?
- If the object isn’t used, how might that make it feel?

B. Now that you have thought and written about the object, you will write from its perspective. Write your draft, aiming for at least a page. Your writing should:

- Use first person
- Be from the perspective of the object
- Introduce who the object is
- Tell a story about it from the start of the day until the end
Activity 3: Building on Perspective

A. You have now explored the importance of perspective and written a draft from a perspective different from your own. For this activity, you can complete either or both of the options you previously worked on. The goal is to build on your writing!

- Option A: Create an illustration from the perspective of the object you wrote about in Activity 2. Try to capture the perspective through your drawing. Be sure to depict your object’s perspective, emotions, thoughts, etc.
- Option B: try to write every day or once a week. Writing is a great way to process feelings and ideas, express yourself, and reflect. You can write from your perspective or the perspective of an innate object. You could also create a character and write from their perspective.

Cross Content Connection

Students can choose an object that connects to other content areas and narrate a concept or story from that object’s perspective.
7th Grade Math Project: At the Fair

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 120 minutes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Grade Level Standard(s)</th>
<th>7:EE.B: Solve real-life and mathematical problems using numerical and algebraic expressions and equations.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Caregiver Support Option</th>
<th>Talk about what a neighborhood fair looks like. What are prize bags? Why might there be invitations?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Materials Needed</th>
<th>Paper, Pencil</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Question to Explore</th>
<th>How can we write expressions and equations to represent these real-world situations?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Student Directions</th>
<th>You will be writing equations and expressions given a variety of different real-world situations. Use what you know -- pictures, tape diagrams, ratios, etc. Unless otherwise indicated, please show your work on a separate sheet of paper.</th>
</tr>
</thead>
</table>

Activity 1: Solving equations with rational numbers (30 minutes)

Source: https://im.kendallhunt.com/MS/students/2/5/15/index.html

A. The variables ‘a’ through ‘h’ all represent different numbers. Mentally find numbers that make each equation true. Write your answers next to each equation.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{5}{5} \cdot \frac{5}{5} = a)</td>
<td>(-6 \div 6 = e)</td>
</tr>
<tr>
<td>(7 \cdot b = 1)</td>
<td>(11 \div f = 0)</td>
</tr>
<tr>
<td>(c \cdot d = 1)</td>
<td>(g + h = 0)</td>
</tr>
</tbody>
</table>
B. Match each equation to its solution.

a. \(\frac{1}{2}x = -5 \)
 1. \(x = -4.5 \)

b. \(-2x = -9 \)
 2. \(x = -\frac{9}{2} \)

c. \(\frac{1}{2}x = \frac{1}{4} \)
 3. \(x = -10 \)

d. \(-2x = 7 \)
 4. \(x = 4.5 \)

e. \(x + -2 = -6.5 \)
 5. \(x = 2\frac{1}{2} \)

f. \(-2 + x = \frac{1}{2} \)
 6. \(x = -3.5 \)

C. A number line is shown below. The numbers 0 and 1 are marked on the line, as are two other rational numbers \(a \) and \(b \).

```
        b ------- 0 ------- 1 ------- a
```

Which of the following numbers are positive? Which are negative?

\(a - 1 \) \quad \(a - 2 \) \quad \(-b \) \quad \(a + b \) \quad \(a - b \) \quad \(ab + 1 \)
Activity 2: At the Fair (50 minutes)

A. Tyler is making invitations to the fair. He has already made some of his invitations and he wants to finish the rest of them within a week. He is trying to spread out his remaining work by making the same number of invitations each day. Tyler draws a diagram to represent the situation:

1. Explain how each part of the situation is represented in Tyler’s diagram:
 a. How many total invitations Tyler is trying to make?

 b. How many invitations he has made already?

 c. How many days does he have to finish the invitations?

B. How many invitations should Tyler make each day to finish his goal within a week? Explain or show your reasoning.

 1. Use Tyler’s diagram to write an equation that represents the situation. Explain how each part of the situation is represented in your equation.

 a. Show how to solve your equation

C. A musician performed at three local fairs, including Tyler’s. At the first fair, he doubled his money and spent $30. At the second fair, he tripled his money and spent $54. At Tyler’s, he quadrupled his money and spent $72. In the end, he had $48 left. How much did he have before performing at the fairs?
Activity 3: Prize Bags (30 minutes)
Source: https://im.kendallhunt.com/MS/teachers/2/6/11/preparation.html

A. Noah and his sister are making prize bags for a game at the fair. Noah is putting 7 pencil erasers in each bag. His sister is putting in some number of stickers. After filling 3 of the bags, they have used a total of 57 items. Here is a diagram to represent this situation:

```
57
x 7 x 7 x 7
```

Explain how the diagram represents the situation.

B. Noah writes the equation 3(x+7)-57 to represent the situation.
 1. Do you agree with him? Explain your reasoning.

 2. How many stickers is his sister putting in each prize bag? Explain or show your reasoning.

C. A family of 6 is going to the fair. They have a coupon for $1.50 off each ticket. If they pay $46.50 for all their tickets, how much does a ticket cost without the coupon? Explain or show your reasoning. If you get stuck, consider drawing a diagram or writing an equation.

Activity 4: Reflection (10 minutes)

We use writing equations all the time in real-world situations.
- Can you think of times when you or someone else could have answered a question using an equation? What type of question was it?

There are many strategies you can use when writing and solving equations. What do you prefer? Do you jump right into the numbers or do you like to draw a diagram?

Extension:
This situation was about a neighborhood fair. Think of what you would like to have at your fair -- games, carnival rides, food, or other things. Think of the prices and costs of these things. Create an equation for each of your items at the fair to calculate your profit. Remember to include tickets sold and the price of the ticket! Also, how many people do you think your fair will attract? How many days will it be open?
7th Grade Science Project: What caused the base of the light pole to decay?

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>120-130 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level Standard(s)</td>
<td>MS-PS1-2 - Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.</td>
</tr>
<tr>
<td>Caregiver Support Option</td>
<td>Provide support as needed with reading and carrying out directions, reading texts, and discussing questions throughout the project packet.</td>
</tr>
<tr>
<td>Materials Needed</td>
<td>Paper, Pen or Pencil (ideally two different colors for making edits).</td>
</tr>
<tr>
<td>Question to Explore</td>
<td>What caused the base of the light pole to decay? How can you tell one substance from another? How do substances change into different substances during chemical reactions?</td>
</tr>
<tr>
<td>Student Directions</td>
<td>Directions for you to follow are provided in each activity. Answer any questions for which space is not provided on a separate sheet of paper. Let’s do some science!</td>
</tr>
</tbody>
</table>

Activity 1: My Initial Ideas about the Decayed Light Pole (20 minutes)

[Text and Picture- Adapted from: CBS Chicago- Rusty, Corroded Light Poles Continue to Be Problem Across City]

Light poles are all around us in the city. But, the street lights in Chicago are breaking down, and toppling over on property and people. On Thursday, November 21st, 2019, a woman was struck by one outside the Thompson Center downtown. The heavy metal pole fell on top of the woman as she waited to cross the street! Luckily, she was not seriously injured.

After the accident, scientists for the city rushed to the scene. When they examined the fallen light pole, they noticed something strange. Underneath the shiny decorative cover, scientists noticed lots of trapped water and snow. They also noticed lots of road salt stuck to the base of the light pole. The scientists observed that the metal that made up the base looked very different than on a new light pole. Instead of being hard and dark grey/black the metal was reddish-brown and broke into pieces when touched. What could have happened to decay the base of the light pole? What should the city of Chicago do to prevent more accidents?

A. Observing the Light Poles: Below is a picture of the base of a decayed light pole, and a brand new one. The decorative cover has already been removed. What do you notice about the two different light poles? Using the description in the text above and the pictures below, compare and contrast the appearance of the two light poles.
B. Choosing an Initial Claim: Two scientists observed the base of the decayed light pole. Each had a different idea of what was happening.

- **Dr. Jackson:** The decayed light pole is made of the **same substance** as a new light pole. It may look different than it did before, but is still the same substance.
- **Dr. Castillo:** The corroded light pole is made of a **different substance** than a new light pole. The original substance has changed into something entirely new.

Which scientist do you agree with most? **On a separate piece of paper, complete the sentence.**

I mostly agree with ____________________________ (CHOOSE A SCIENTIST) because...

C. Completing Initial Model: Complete the model below to show what you think happened to the light pole.

- Add drawings to show what the decayed light pole looks like. Be sure to include the water and road salt. All drawings must have labels!
- Imagine you had magical "microscope eyes" that let you observe the molecules and atoms that make up the light poles. Do you think the molecules are the same or different in the brand new and decayed light pole?
 - In the zoom-in circles, **draw the molecules you think make up the brand new light pole and the decayed light pole.**
Activity 2: How can you tell one substance from another? How do substances change into different substances during chemical reactions? (60 minutes)

A. Investigating Substance Changes and Chemical Reactions: Chemists are a type of scientist that study the properties of substances.

- A substance is something that is made of all the same atoms or groups of atoms.

In a lab, scientists combined (mixed) two substances, aluminum (Al) and sodium chloride (NaCl). Since atoms are too small to see, the scientists used a model to show what happens to the atoms when the substances are combined. Observe the pictures of the models below. Count the number of each kind of atom at each stage of the reaction. Answer the questions on a separate sheet of paper.
Beginning of Reaction

of Al atoms: _______ # of Na atoms: ______ # of Cl atoms: _______

Middle of Reaction

of Al atoms: _______ # of Na atoms: ______ # of Cl atoms: _______
Questions:

1. How did the number of each type of atom change when the substances were combined?

2. How did the arrangement of the atoms change when the substances were combined?

3. Are the same substances present at the beginning of the reaction present at the end of the reaction?

B. Properties of Substances: The diagrams above are an example of a chemical reaction.

- A chemical reaction is a process in which atoms rearrange to form new substances. Every substance has properties.

- Properties are something that can be observed about a substance, such as color, smell, or boiling point.

Observe the properties of all the substances below. Then, answer the questions on a separate sheet of paper.
<table>
<thead>
<tr>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The substances at the beginning of a reaction are called reactants. What are the reactants?</td>
</tr>
<tr>
<td>2. The substances at the end of a reaction are called products. What are the products?</td>
</tr>
<tr>
<td>3. Compare and contrast the properties of aluminum (Al) and aluminum chloride (AlCl₃).</td>
</tr>
<tr>
<td>4. Compare and contrast the properties of aluminum (Al) and sodium (Na).</td>
</tr>
<tr>
<td>5. Is it possible for two different substances to have exactly the same properties?</td>
</tr>
</tbody>
</table>

C. Properties of Substances in the Light Poles: Chemists use the properties of substances to help identify the substances. Different substances have different properties, because they are made of different atoms or different groups of atoms. Scientists took samples of the substances in the brand new light pole and the decayed light pole. **Review the properties of each**
substance below. Then, answer the questions below on a separate sheet of paper.

<table>
<thead>
<tr>
<th>New Light Pole</th>
<th>Decayed Light Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>-shiny dark grey</td>
<td>-reddish brown</td>
</tr>
<tr>
<td>-very hard</td>
<td>-crumbles, can break into pieces</td>
</tr>
<tr>
<td>-Melting Point: 1535°C</td>
<td>-Melting Point: 1566°C</td>
</tr>
</tbody>
</table>

(Source: American Elements Iron and American Elements Iron Oxide)

Questions:
1. Compare and contrast the properties of the new and decayed light pole.
2. Do you think the light poles are made of the same substance or different substances? Explain your answer.
3. Based on your answer to Question 2, review the claims in Activity 1, Part B. Which scientist do you agree with now? Explain your answer.
4. Look back at the model in Activity 1, Part C. Based on what you know about substances, chemical reactions, and the properties of substances, how would you change your model? Make any revisions using a different color pen/pencil.

Activity 3: Reading About Chemical Reactions and Substances (30 minutes)

A. "Atomic Zoom In"
 Read the text below. As you read, annotate by:
 (a) making connections
 (b) asking questions
 (c) underlining difficult/challenging words

 Answer the questions that follow on a separate sheet of paper.

Atomic Zoom In [Adapted from: AMPLIFY, Atomic Zoom In]
Have you ever noticed how good orange juice smells when you pour yourself a glass? You may be surprised to learn that for many brands of orange juice, the aroma is added. Orange juice is often kept in big tanks for a time before it is packaged and shipped. The juice needs to be processed in order to keep it from spoiling. This processing can cause the pleasant orange scent and flavor to fade. To address this problem, chemists add a substance that makes the packaged juice smell and taste like fresh-squeezed oranges. That substance is called ethyl butyrate (EH-thul BYOO-tuh-rate).

Ethyl butyrate is a naturally occurring substance found in many fruits. If you examined a sample of ethyl butyrate, you might observe that it is a clear liquid with a strong smell of pineapple or orange. It has a chemical formula of C₆H₁₂O₂, which means it is always made of groups of 6 carbon atoms, 12 hydrogen atoms, and 2 oxygen atoms. This group of different atoms forms a pattern—it repeats over and over again to make up the substance. The more times the pattern repeats, the more ethyl butyrate you have.

Even very small differences at the atomic scale can have important effects on the properties of a substance. One substance that is similar to ethyl butyrate at the atomic scale...
is called isovaleric (EYE-so-vuh-LAIR-ick) acid. If you were to observe the properties of isovaleric acid, you would see that it is also a colorless liquid, but you would never get it confused with ethyl butyrate. Why? Instead of the pleasant smell of citrus, you would smell something similar to sweaty gym socks. Gross!

Why do these two substances have different properties? Looking more closely at the atoms in isovaleric acid, you can see that it is made of groups of 5 carbon atoms, 10 hydrogen atoms, and 2 oxygen atoms, so its chemical formula is $\text{C}_5\text{H}_{10}\text{O}_2$. Ethyl butyrate and isovaleric acid have different properties because the atoms that make up each substance are grouped differently.Isovaleric acid has one fewer carbon atom and 2 fewer hydrogen atoms. These atoms are also arranged in a different pattern. At the atomic scale, these seem like small differences, but even small differences are enough to give the two substances very different properties.

Questions:

1. Why do ethyl butyrate and isovaleric acid have different properties, even though they are made of the same types of atoms?

2. A scientist studies a third substance. This substance is called glucose, and is made with 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. Would this substance have the same properties as ethyl butyrate or isovaleric acid? Why or why not?
B. “Corrosion of Light Poles”

Read the text below. As you read, annotate by:

(a) making connections
(b) asking questions
(c) underlining difficult/challenging words

Answer the questions that follow on a separate sheet of paper.

[Text Adapted from: CBS-Rusty, Corroded Light Poles Continue To Be Problem Across City]
[Image Adapted from: CBS- Women Injured by Falling Light Pole]

<table>
<thead>
<tr>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What is the reddish-brown substance that makes up the base of the decayed light pole?</td>
</tr>
<tr>
<td>2. Describe the chemical reaction that takes place on the base of the light poles. What are the reactants? What are the products?</td>
</tr>
<tr>
<td>3. Why does rust (iron oxide) have different properties than the iron atoms?</td>
</tr>
<tr>
<td>4. What is the problem with the design of the light poles? How would you change the design to make the light poles in the city safer?</td>
</tr>
</tbody>
</table>

Decay of Light Poles

Why did a light pole fall on a woman in downtown Chicago? The base was seriously decayed, but the decay had been hidden by a decorative cover.

City scientists who repair these poles say covers might have looked pretty at first, but their design has created a serious danger.

Dr. Sammy Tin, an IIT professor and materials engineer, said these decorative covers trap rain, snow and road salt against the base. Inside the cover, a chemical reaction takes place. The iron atoms in the light pole react with the water and road salt. During the chemical reaction, the groups of atoms rearrange to form a new substance, iron oxide (commonly known as rust). This new substance, made of different groups of atoms, has different properties. While the original substance is strong enough to hold up the light pole, the new substance is weak, and cracks under the weight!

The Chicago Department of Transportation has said it inspects under the covers for corrosion. But as Tin said, the design itself increases the speed of the chemical reaction. If the decorative covers weren’t there, the reactants (iron, water, and road salt) would not gather together. The chemical reaction would not take place (or take place much more slowly), and city scientists would be able to see the rust as it formed.
Activity 4: Explaining the Decayed Light Pole (20 minutes)

A. Writing a Letter to the Mayor: Light poles in Chicago are falling down! What should the city do to prevent another accident?

On a separate sheet of paper, write a letter to Mayor Lori Lightfoot. In your letter, explain:
- The current design flaw in the light poles.
- The chemical reaction that occurs.
- Your suggestions for a better design!

Use all the words in the word bank below:

<table>
<thead>
<tr>
<th>IRON</th>
<th>CHEMICAL REACTION</th>
<th>PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSTANCE</td>
<td>ATOMS/GROUP OF ATOMS</td>
<td>RUST/IRON OXIDE</td>
</tr>
</tbody>
</table>

B. Creating a Final Model: Complete the model on the next page to show what happened to the light pole.
- Add drawings to show what the decayed light pole looks like.
- Be sure to include the water and road salt.
- All drawings must have labels!
- Imagine you had magical “microscope eyes” that let you observe the atoms that make up the light poles.
 - In the zoom-in circles, draw the atoms and/or groups of atoms you think make up the brand new light pole and the decayed light pole.
 - Use the key provided to show the different atoms/group of atoms.
 - Label the properties of the iron and iron oxide.
Final Model: What happened to the light pole? How did it happen?

Key: Use the following shapes to represent the different atoms/groups of atoms

- Iron ●
- Iron Oxide/Rust ▲
- Road Salt ■
- Water X

New Light Pole

Decayed Light Pole

Cross Content Connection:

Reading: Information Texts
- RI.7.1: Cite several pieces of textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.
- RI.7.2: Determine two or more central ideas in a text and analyze their development over the course of the text; provide an objective summary of a text.

Social Studies Standards
- SS.IS.6.6-8.LC. Construct arguments using claims and evidence from multiple sources while acknowledging their strengths and limitations
Tanto el butirato de etilo (izquierda) como el ácido isovalérico (derecha) están compuestos por grupos de átomos de carbono, hidrógeno y oxígeno que se repiten. Sin embargo, uno huele a cítrico y el otro huele a calcetines pasados a sudor!
AlCl₃
Cloruro de aluminio

Color: Amarillo
Fase a temp. ambiente: Sólido
Olor: Sin olor
Punto de fusión: 190°C
Punto de ebullición: 190°C

Na
Sodio

Color: Gris lustroso
Fase a temp. ambiente: Sólido
Olor: Sin olor
Punto de fusión: 98°C
Punto de ebullición: 881°C
<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Gris lustroso</td>
<td>Blanco</td>
</tr>
<tr>
<td>Fase a temp. ambiente</td>
<td>Sólido</td>
<td>Sólido</td>
</tr>
<tr>
<td>Olor</td>
<td>Sin olor</td>
<td>Sin olor</td>
</tr>
<tr>
<td>Punto de fusión</td>
<td>660°C</td>
<td>801°C</td>
</tr>
<tr>
<td>Punto de ebullición</td>
<td>2,470°C</td>
<td>1,413°C</td>
</tr>
</tbody>
</table>
Grade 6-8 Social Science Project: Celebrating Everyday Heroes

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 70-80 minutes (average of 15-20 mins per activity)</th>
</tr>
</thead>
</table>
| **Grade Level Standard(s)** | **Standards for Grades 6-8:**
SS.IS.3.6-8: Determine sources representing multiple points of view that will assist in organizing a research plan.
SS.IS.4.6-8.MdC: Determine the credibility of sources based upon their origin, authority and context.
SS.IS.5.6-8.MdC: Identify evidence from multiple sources to support claims, noting its limitations.
SS.IS.6.6-8.MdC: Construct explanations using reasoning, correct sequence, examples and details, while acknowledging their strengths and weaknesses. |
| **Caregiver Support Option** | Notes on the structure:
- Activities are designed to be done in order - each one builds on the other so you should not skip activities
- Activities are an average of 15-20 mins each. More than one can be done in a day.
Before giving the activities to students, caregivers might:
- Spend time reading and discussing the “student directions” together. Encourage them to ask any clarifying questions.
- When reading the texts, students should circle or underline any unfamiliar words so you both can define them together
In this particular lesson, it’s important to note that:
- Students may not know what a trading card is, so find an example to show to the child.
- Caregivers may want to review what the student feels makes a hero. |
| **Materials Needed** | Writing tool, paper |
| **Question to Explore** | How can we celebrate our everyday heroes? |
| **Student Directions** | There are heroes all around us. In this week’s inquiry, students think of a person in their family, community, or larger world who is making a difference right now. They identify a heroic trait or talent, then use words, pictures, and a heavy dose of exaggeration to cast this person as a tall-tale character. Throughout the week, they’ll use their learning to create a “Tall-Tale Trading Card” that describes their hero in larger-than-life terms. |
Day 1 (Activity 1): Exploring Tall Tales (15-20 min)

This week we’re thinking about the question: “How can we celebrate our everyday heroes?”

Your challenge this week - Create a “Tall-Tale Trading Card” that describes the special traits and talents of your personal hero.

Today you will:
- Explore special traits of tall-tale characters
- Recognize and create exaggerations
- Pick a personal hero

You will need:
- Paper or notebook
- Writing tool
- “Everyday Heroes” handout

Let’s Get Started!
Activity 1: THINK - Look at this postcard. Ask yourself:

- What’s going on here?
- What seems real?
- What seems fake?

Tall-tale postcards like the one in the picture were made by putting together different photos to make unbelievable scenes, like a corn cob so big that it took a horse-drawn cart to move it! Like the postcards, stories called tall tales were popular in the United States in the 1800s and early 1900s. These tales were exaggerated, meaning that people and events were made to seem much larger or greater than they really were.

New Words
- tall tale: a story about a larger-than-life character, sometimes based on a real person, who has exaggerated adventures
- Exaggerated: described as larger or greater than is true

Activity 2: EXPLORE - This picture shows a statue of a tall-tale character.

- What’s something you notice about it?
- How would you describe the person in it?

The statue is of a tall-tale character named Paul Bunyan, a mighty lumberjack. People began to tell many stories about the lumberjacks of North America in the late 1800s, when the Western United States was first being settled. At this time, lumberjacks did the work of cutting down trees so that towns and farms could be created.
Read these larger-than-life descriptions from Paul Bunyan, American Hercules (1937).

- “So great was his lung capacity that he called his men by blowing through a hollow tree. When he spoke limbs sometimes fell.”
- “For a big man, Paul was very quick on his feet. He could go to one end of his house, blow out the light and get into his bunk before it got dark.”
- “Lumberjacks say that he is the man who cleared all the trees out of North Dakota. He also scooped out the hole for Lake Superior.”

A. What do these exaggerations tell us about the character of Paul Bunyan?
B. What do they tell us about what people might have valued during this time period?
C. OPTIONAL Watch this short video (Paul Bunyan, American Hercules (1937) https://youtu.be/C-zKKoHvXn0) which shares some tall tales about Paul Bunyan. See if it confirms or changes your thinking.

If you are unable to watch the video: This tall tale makes Paul Bunyan seem superhuman in strength, skill, and size. All of these traits were important for lumberjacks living and making homes in wild, forested areas.

New Word
- Trait: A quality that makes one person different from another

Activity 3: DO - Your challenge this week: Create a “Tall-Tale Trading Card” that describes the special talents and traits of a real-life hero. Today, you’re going to choose your real-life hero!

A trading card – like this one of Paul Bunyan – usually contains a picture of a person with some important facts about them.

People often collect or trade these cards with other people. The trading card you create will describe a real-life hero. This might be a person in your own family, your community, or anywhere in the world.

Think about:
- Who are the heroes in your life?
- What makes them special? What trait or talent do you admire about them?
 - Are they strong like Paul Bunyan?
 - Do they have a skill or talent?
 - Is there something else special about them, like kindness or courage?

A. Make a list of the heroes in your life (or use the "Everyday Heroes" handout if you like)
B. Write: Make a list of three people that you think are heroes in your life.
C. Write: Include an important trait or talent for each person.
D. Talk: Choose one of the heroes from your list.
E. Practice talking about your hero in an exaggerated way.
F. Need help? Look at the example below. Notice how each sentence about Paul Bunyan is a bigger exaggeration! Can you do the same with your hero?
 - 1st try: Paul Bunyan is so strong he can cut down a forest by himself.
 - 2nd try: Paul Bunyan is so strong he can clear a forest with one swing of his axe.
Day 1 - Everyday Heroes Handout

Activity 1: List the names of a person you admire in your family, local community, or the larger world. Think about celebrities, athletes, artists, leaders, and people making a difference in the world right now. Write an important trait or talent for each person.

<table>
<thead>
<tr>
<th>Person</th>
<th>Trait or Talent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity 2: Now choose 1 of the 3 people and tell their story out loud using this sentence frame. No need to write yet, this is a thinking exercise! (Name) is so (describe trait or talent), they (exaggeration)!

- Now try that sentence frame, exaggerating the trait or talent to make it more unbelievable!
- Now try that sentence frame one more time, getting even wilder and harder to believe!

Activity 3: Write your final sentence here:

___ is so __,
(name) (describe trait or talent)
they __!
(exaggeration)

Day 2: Imagining Your Hero (15-20 min) "How can we celebrate our everyday heroes?"

Today you will:
- Investigate what makes a story into a tall tale
- Explore the story of John Henry
- Create a “Trading Card Plan”

You will need:
- Paper or notebook
- Writing tool
- “Trading Card Plan” hand out (optional)

Activity 1: THINK - While tall tales could be outrageous and funny, they also served an important purpose. Characters showed qualities like strength, courage, and cleverness, all of which were important in rugged landscapes and dangerous times in US history. These stories provided examples of people coping with hardships and overcoming challenges. Some historians say they also helped to create a shared history for a new nation. Tall tales did include things that were unreal, but some tall tales were based on real people who did amazing things.
<table>
<thead>
<tr>
<th>Name</th>
<th>Fact</th>
<th>Exaggeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Calamity Jane"</td>
<td>Martha Jane Canary worked as a Pony Express rider, carrying mail by horseback over 50 miles of rough terrain and across rivers. She was known for being tough and fearless, as well as good at horse racing.</td>
<td>Calamity Jane was so good at roping cattle that she could knock a fly off a cow’s ear with a 16-foot whiplash.</td>
</tr>
<tr>
<td>"Johnny Appleseed"</td>
<td>John Chapman was a religious man and a businessman who planted nurseries of apple trees on the western frontier. He was known for his wilderness skills and his love of sleeping outdoors.</td>
<td>Johnny Appleseed walked across the wilderness of the United States, wearing no shoes, a burlap sack, and a tin pot hat, scattering apple seeds in the wind.</td>
</tr>
<tr>
<td>"Davy Crockett"</td>
<td>David Crockett was a politician and soldier who died at the famous Battle of the Alamo in Texas. He was known as a very skilled frontiersman and hunter.</td>
<td>Davy Crockett killed a bear when he was three years old.</td>
</tr>
</tbody>
</table>

Activity 2: EXPLORE - Let’s dig deeper into a tall tale based on a real person named John Henry. He helped to build the railroads in the mid-1800s. To build the railroads, people needed to dig tunnels and create paths through mountains.

Look at this picture of people standing in front of a railroad tunnel they helped to dig.

- If they didn’t have big machines to help them, how do you think they could dig these tunnels?
- What kind of special traits or talents would help someone do this work?
This picture shows a statue of John Henry.

- How would you describe how John is represented in the statue?
- Why do you think someone like John would be a hero to railroad workers?

John Henry worked on the railroads as a steel driver. To dig tunnels, steel drivers like John would swing their hammers as hard as they could to pound a drill into rock. Then, those holes would be filled with dynamite and the rock would be blasted away. The companies that built the railroads needed steel drivers to work hard and fast. These companies were racing each other to build railroad systems across the United States. Thousands of people worked on building the railroads. It was very hard and dangerous work, and workers did not get paid very much for doing it.

In 1870, railroad workers began to dig the Great Bend Tunnel in the area now known as West Virginia. While digging the tunnel, John Henry competed against the steam drill and won! If you were making a “Tall Tale Trading Card” for John Henry, what would it look like?

A. How would you fill in these blanks?
 - Name:
 - Trait or Talent:
 - Tool:
 - Setting:
 - Known For:

 - If you are unable to watch the video: This tall tale makes John Henry seem superhuman in strength, skill, and size. All of these traits were important for steel drivers living and competing against the increasing use of machines to build railroad systems. Isn’t it amazing that people still tell John Henry’s story today?

Activity 3: DO - Keep in mind your challenge this week: Create a “Tall-Tale Trading Card” that describes the special talents and traits of a real-life hero. Today, you will choose one of your everyday heroes and make a “Trading Card Plan.”

A. Think back to the list you made of three people you think are heroes. Do you remember choosing one of those heroes and making up exaggerations about them?

The plan you create today will show that hero’s important trait or talent in an exaggerated way.

Goals: Your “Trading Card Plan” should show:
- A real person who is a hero in your eyes
- A special trait or talent that has been exaggerated
- Words and pictures that show the person’s actions in an exaggerated way
- Details that reflect the time and place
C. Now it’s time to create your “Trading Card Plan.” Make sure to include:

- Hero Name:
- Trait or Talent:
- Tool:
- Setting:
- Known For: (Hint: This is your exaggeration!)
- Sketch:

D. Write it out on a piece of paper or use the “Trading Card Plan” handout. Remember to save your “Trading Card Plan” so you can use it when you make your “Tall-Tale Trading Card.”

Trading Card Example

Name: Paul Bunyan
Trait or Talent: Strength
Tool: Axe
Setting: Forest
Known for: (Hint: This is your exaggeration!)

Paul Bunyan is so strong he can clear a whole forest with one swing of his axe, or sometimes with just a sneeze!

Sketch:

Trading Card Plan Handout

Name:
Trait or Talent:
Tool:
Setting:
Known for: (Hint: This is your exaggeration!)
Sketch:
Day 3: Evaluating the Work (15-20 min) "How can we celebrate our everyday heroes?"

Activity 1: THINK You’ve already created your “Trading Card Plan” describing your hero in words and pictures! When someone sees your plan, they should learn about:
- A real person who is a hero to you
- Your hero’s special trait or talent (exaggerated by you!)
- Details that reflect time and place

Activity 2: EXPLORE
A. Look at this student’s “Tall-Tale Trading Card.”
 - Does this work seem to show a real person?
 - Does this work seem to show a special trait or talent that has been exaggerated?
 - Do words and pictures show the person’s actions in an exaggerated way?
 - Are there details that reflect time and place?

B. Now imagine we have the chance to give another student feedback on their work to make it stronger and clearer.
 - What advice would you give the artist to make this work even stronger?
 - The student could add...
 - The student could try...
 - The student could change...

Activity 3: DO - Keep in mind your challenge this week: Create a “Tall-Tale Trading Card” that describes the special traits and talents of your personal hero. Today, you will explore your "Trading Card Plan" to check if you are meeting your goal. Pencils down! This is a thinking exercise!

A. Look at your work and ask:
 - What parts show who my hero is?
 - What parts show my hero’s trait or talent?
 - What parts show that I’ve exaggerated my hero’s trait or talent

B. Wait, still don’t touch your work! First, make a work plan! Complete one of these sentences:
 - I will add...
 - I will try...
 - I will adjust...

Be sure to save your "Trading Card Plan" so you can use it to create your “Tall-Tale Trading Card.”
Day 4: Finalizing the Work (15-20 min) "How can we celebrate our everyday heroes?"

<table>
<thead>
<tr>
<th>Today you will:</th>
<th>You will need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Finish creating your "Tall-Tale Trading Card"</td>
<td>● Your work from previous activities</td>
</tr>
<tr>
<td></td>
<td>● Writing tool</td>
</tr>
<tr>
<td></td>
<td>● A sheet of paper or large index card</td>
</tr>
<tr>
<td></td>
<td>● "Tall Tale Trading Card Template" handout, (optional)</td>
</tr>
<tr>
<td></td>
<td>● Coloring materials (optional)</td>
</tr>
</tbody>
</table>

Activity 1: THINK - It’s time to take steps to finalize your work based on your work plan. Remember your work plan? That’s when you said:
● I will add…
● I will try…
● I will adjust…

A. Decide or discuss: **What will you do next to finalize your work?**

Activity 2: EXPLORE - Check out a "Tall-Tale Trading Card" created by another student.

A. What changes did this person make to their work?
B. How do these changes help you understand more about their tall-tale character?

First Draft

Final Draft

- **Name:** Dr. Alex and Governor DeWine
- **Trait or Talent:** Smart Leader
- **Tool:** Science
- **Setting:** Ohio 2020
- **Known For:** Protecting Ohio

Sketch it:
- Stay home.
- Flatten the curve.

Final Draft

- **NAME:** Dr. Alex and Governor DeWine
- **STAY HOME.**
- **FLATEN THE CURVE.

TRAIT or TALENT: Smart Leader
- **TOOL:** Science
- **SETTING:** Ohio 2020
- **KNOWN FOR:** Protecting Ohio
Activity 3: DO - Today, you will work to finalize your “Tall-Tale Trading Card”.
 A. Get out a new sheet of paper or large index card. You could also use the “Tall Tale Trading Card Template” handout.
 B. Get out your “Trading Card Plan” and any other materials from previous activities.
 C. Think about your work plan and get to work making your final draft.

Day 5: Reflecting and Sharing (15-20 min) "How can we celebrate our everyday heroes?"

<table>
<thead>
<tr>
<th>Today you will:</th>
<th>You will need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Think about how your “Tall-Tale Trading Card” turns a real-life person into a larger-than-life character</td>
<td>● Your finished “Tall Tale Trading Card”</td>
</tr>
<tr>
<td>● Find a way to share your final work</td>
<td>● “Sharing” handout (optional)</td>
</tr>
</tbody>
</table>

Activity 1: THINK - Ordinary people became heroes of tall tales in the past. Just imagine: your hero might inspire a tall tale in the future!

Activity 2: EXPLORE - Look at your finished “Tall-Tale Trading Card.” Think about or discuss:
 ● How would you explain the choices you made in designing your trading card to someone else?
 ● Why is it important to celebrate our everyday heroes?
 ● What do you hope people will understand about your hero by looking at your trading card?

Activity 3: DO - Now that you’ve completed your “Tall-Tale Trading Card,” it’s time to share your work with others! Here are some ideas for connecting with others:
 A. Share with a family member and...
 ○ Help them to create their own and ask them if they have comments, questions, or a connection to your work (or use the “Sharing” handout to get a written response).
 B. Ask an adult to help you share your work online with the hashtag #inquiredtogether.
 C. Send your “Tall-Tale Trading Card” to the person you represented.
 D. Hang your “Tall-Tale Trading Card” in the window.
 E. Keep your “Tall-Tale Trading Card” somewhere safe as a historical record that you and others can look back on later
DAY 5 - Sharing Handout - Please take a look at my work and fill this out. I have a... (circle one)

comment:

question:

connection:

Cross Content Connection: By examining tall tales and characters used in history, from Paul Bunyan to Johnny Appleseed, and by developing your own character, you are using many social science skills, but also so much more! There are so many connections to language arts, math and science that you can continue to explore. Here are a few ways to extend your learning and make connections to other subjects.

- **Math**: Create word problems for younger students to use that INCLUDE your characters in everyday life! Help the younger students practice their math facts by designing a few questions that include the use of your character and others.

- **Science**: Research the area of the world that your character lives in (or lived in). Describe the climate and physical features of that area. How might those things impact your character?