Hello Students,

This resource packet includes multiple projects that you can work on independently at home. Each project can be completed over multiple days, and the projects can be completed in any order. These projects are standards-aligned and designed to meet the Remote Learning instructional minutes guidelines by grade band.

Use the table of contents on this page to navigate through the project packet.

6th Grade Literacy Project: Perspectives 1
6th Grade Math Project: Let’s Have A Cookout! 4
6th Grade Science Project: What’s going on with Andre’s soup? 9
Grade 6-8 Social Science Project: Celebrating Everyday Heroes 19
6th Grade Literacy Project: Perspectives

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 120-130 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level Standard(s)</td>
<td>RL.6.2 Determine a theme or central idea of a text and how it is conveyed through particular details; provide a summary of the text distinct from personal opinions or judgments. RL.6.6 Explain how an author develops the point of view of the narrator or speaker in a text. W.6.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.</td>
</tr>
<tr>
<td>Caregiver Support Option</td>
<td>Caregivers can read and discuss the students’ writing and discuss the writing prompts.</td>
</tr>
<tr>
<td>Materials Needed</td>
<td>Lined paper Pen/pencil</td>
</tr>
<tr>
<td>Question to Explore</td>
<td>How does meaning change when perspective changes? How can considering other perspectives help me understand myself, others, and the world?</td>
</tr>
<tr>
<td>Student Directions</td>
<td>In this task, you think about the importance of perspective. Then, you will brainstorm or draft a piece of writing. Finally, you will choose to illustrate your draft or keep writing - this time about your experiences.</td>
</tr>
</tbody>
</table>

Activity 1: Understanding Perspective
A. When writers begin to write, they make a decision about **point of view**. They decide if they are going to write in first, second, or third person. Using a first person ("I") **perspective** is just as important as writing in any other perspective. Perspective is how someone sees a situation, their feelings about a situation, and their opinions of a situation. When we read, we see the story from the perspective of the narrator, which is whoever is telling the story at a particular point. Sometimes the narrator is a character in the story. Some stories have more than one narrator, so we get different perspectives on the story. As in life, there are always at least two sides to every story, which is why people go to court and why teachers ask each student involved in a disagreement to tell his or her side of a story. We might also ask, what in the narrator’s culture and experience help shape and inform how they tell the story?
With these ideas in mind, on notebook paper explain how the perspectives might be different in the examples below. Use the sentence frame below if it is helpful.

A teacher/mouse/brother might think...while a student/human/sister might think...

- A teacher and a student
- A mouse and a human
- A brother and a sister

B. Choose one of the examples above and write a few sentences from each of the two perspectives. In other words, step into the shoes of the speaker and write their thoughts. For example, if a human and a mouse are both in a kitchen, what would each think, feel, and do? Use first person and write from each perspective.

Activity 2: Understanding Perspective

A. Remember: When we read a story written in first person
 - we see it from the perspective of the narrator, who may also be a character in the story.
 - Different characters in the story have different perspectives on the events.
 - Awareness of different perspectives is a type of critical thinking.

One unique way to explore perspective is to write from the perspective of an inanimate object. That means a thing that is not alive, such as a rock or a book. You will now pick an object and write--"A Day in the Life of a ______"--a story from the object’s perspective. You can choose anything non-living. It might be fun to write from the perspective of a chair, a phone, a washing machine at the laundromat, gym shoe, or a tree. It is your choice! Start with a brainstorm by answering these questions on notebook paper:

- What is the object?
- Where is this object found?
- When is this object used?
- Who uses this object?
- What are some of the things this object observes during the day?
- What are some of the things this object does during the day?
- How does the object feel about where it is?
- How does the object feel about who uses it?
- If the object isn’t used, how might that make it feel?

B. Now that you have thought and written about the object, you will write from its perspective. Write your draft, aiming for at least a page. Your writing should:

- Use first person
- Be from the perspective of the object
- Introduce who the object is
- Tell a story about it from the start of the day until the end
- Use specific details and examples to show what it does, who it sees, what it thinks, how it feels.
Activity 3: Building on Perspective

A. You have now explored the importance of perspective and written a draft from a perspective different from your own. For this activity, you can complete either or both of the options you previously worked on. The goal is to build on your writing!

- Option A: Create an illustration from the perspective of the object you wrote about in Activity 2. Try to capture the perspective through your drawing. Be sure to depict your object’s perspective, emotions, thoughts, etc.
- Option B: try to write every day or once a week. Writing is a great way to process feelings and ideas, express yourself, and reflect. You can write from your perspective or the perspective of an innate object. You could also create a character and write from their perspective.

Cross Content Connection
Students can choose an object that connects to other content areas and narrate a concept or story from that object’s perspective.
6th Grade Math Project: Let’s Have A Cookout!

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>120 minutes</th>
</tr>
</thead>
</table>

| Grade Level Standard(s) | 6.EE.A: Apply and extend previous understandings of arithmetic to algebraic expressions.
6.EE.B: Reason about and solve one-variable equations and inequalities. |
|-------------------------|---|

<table>
<thead>
<tr>
<th>Caregiver Support Option</th>
<th>Discuss how to plan for a party that focuses on the numbers (number of people, how much food/drink, what it will cost, etc.)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Materials Needed</th>
<th>Paper, pencil, colored pencils</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Question to Explore</th>
<th>How does math impact my life? How can I use my math skills to plan events and activities?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Student Directions</th>
<th>Use your knowledge of greatest common factors, algebraic expressions and perimeter to answer the following questions. Unless otherwise indicated, provide your responses on a separate sheet of paper.</th>
</tr>
</thead>
</table>

Activity 1: Planning Is Essential (15 minutes) (adapted with permission from EnVision 2.0, courtesy Savvas Learning Company)

Journi’s dad is planning a cookout for family and friends. There will be 24 people at the cookout.

A. Her dad is renting tables for the cookout and wants to seat an equal number of people at each table. He needs to decide how many tables to get. How could he arrange the seating so that a **reasonable** and **equal** number of people sit at each table? Explain.

B. Journi’s dad has invited 18 adults and 6 children. Mo, his best friend, suggests that he seat an equal number of adults and an equal number of children at each table. What is the greatest number of tables Journi’s dad could use? How many adults and children would be seated at each table? Explain.
C. Use the attached graph paper to draw a picture of the backyard including the tables. Use different colors to represent adults and children at each table.

Activity 2: A Bounce House Adds to the Fun (45 minutes)

Journi’s dad wants to rent a bounce house for the cookout. He gets quotes from two companies.

A. Lotta Fun Company rents a bounce house for a one-time rental fee of $100 plus $20 per hour. Sunshine Bouncy Company rents a bounce house for $40 per hour. Let h = the number of hours the bounce house is rented. Write an expression that shows the cost of renting a bounce house from each company.

<table>
<thead>
<tr>
<th>Lotta Fun Company</th>
<th>Sunshine Bouncy Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Will it cost more to rent from Lotta Fun or Sunshine Bouncy if Journi’s dad rents the bounce house for 3 hours? 5 hours? 10 hours? Show your work and explain your thinking.

3 hours:

5 hours:

10 hours:

C. For how many hours would Journi’s dad have to rent the bounce house from Sunshine Bouncy before it becomes less expensive to rent from Lotta Fun? Show your work and explain.
Activity 3: Protecting the Garden (20 minutes)

Journi’s dad wants to protect his garden in the backyard prior to the cookout. The garden is rectangular, with a length of $2x + 3$ feet and a width of x feet.

You might want to label the dimensions (length and width) on the rectangle so that you can “see” the problem!

A. Fencing material costs $3 per foot including delivery. Write an expression to show the amount of fencing that Journi’s dad will need and then write an expression for the cost of the fence.

<table>
<thead>
<tr>
<th>Expression (amount of fencing needed)</th>
<th>Expression: (the cost of the fence)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Write your expression from Part A for the cost of the fence in the top row of the right column in the table. Then fill in the table to find the cost of fencing material for different widths, x, given in feet.

<table>
<thead>
<tr>
<th>x</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$108</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$144</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

C. Journi’s dad only has $175 for the fence. At most, how many feet of fencing material he can purchase?
Activity 4: Rethinking the Garden (30 minutes)
After the party, Journi’s dad wants to enlarge his garden. He finds fencing material for $2 per foot, but he must pay a $25 delivery fee. Can he build a garden that is exactly 10 feet wide, with the same relationship between the length and width as the original rectangle, and still stay within his original budget of $175? Write and evaluate an expression for the new cost of the fencing material to justify your answer.

Activity 5: Reflection (10 minutes)
Write a reflection regarding the use of math in this real-world situation (planning a party and building a garden). What specifically did you learn? How could you use these skills in other everyday activities?
6th Grade Science Project: What’s going on with Andre’s soup?

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>120-130 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level Standard(s)</td>
<td>MS-PS3-4 - Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.</td>
</tr>
<tr>
<td>Caregiver Support Option</td>
<td>Provide support as needed with reading and carrying out directions, reading texts, and discussing questions throughout the project packet.</td>
</tr>
<tr>
<td>Materials Needed</td>
<td>Paper, Pen or Pencil</td>
</tr>
<tr>
<td>Question to Explore</td>
<td>Why did adding an ice cube cool down the soup in the mug more than the soup in the bowl? What makes things hot or cold? How can you change the energy of an object? How can you prevent thermal energy loss?</td>
</tr>
<tr>
<td>Student Directions</td>
<td>Directions for you to follow are provided in each activity. Answer any questions for which space is not provided on a separate sheet of paper. Let’s do some science!</td>
</tr>
</tbody>
</table>

Activities:

1. Anchoring phenomenon: Soup!
2. Reading: Absolute Zero and Images of Molecules at different Temperatures
3. Simulation: Amplify Thermal Energy Simulation
4. Reading: Air Conditioning
5. Data: Temperature vs. Thermal energy
6. Revisiting the anchoring phenomenon: Soup!
Activity 1: What is going on with Andre’s soup? (10 min)
[Adapted from: Amplify Science Thermal Energy Lesson 3.1]

Andre makes a pot of soup for lunch. He serves up a big bowl for himself and a small mug for his little brother who eats much less.

The soup is much too hot to eat right away, so Andre grabs two ice cubes from the freezer and drops one into his bowl and one into his brother’s bowl. Once the ice cubes have melted, Andre sips a spoonful of soup from the bowl. The temperature is perfect. His brother takes a sip from his mug, and he makes a face. “It’s cold,” he says. Andre checks, and it really is cold! What happened?

Answer the questions below on a separate piece of paper.

A. What do you know about the soups? Write at least 3 facts about Andre and his brother’s soup.
B. What do you wonder? Write at least 2 questions you have about the situation.
C. How can Andre’s soup be perfect and his brother’s be too cold if they were the same temperature to start with and the same amount of ice was added to each?

Activity 2: Reading: “Absolute Zero” (20 min)
[Adapted from: Amplify Science Thermal Energy Lesson 1.3]

A. Read, and highlight or annotate any information that might help you answer the questions.
B. After you are finished reading, answer the questions that follow on a separate piece of paper.

Absolute Zero [Source: Amplify Science Thermal Energy Unit]

You’ve probably felt cold temperatures at some time in your life. Maybe you live somewhere with cold, snowy winters...or maybe you’ve just opened the freezer to grab a popsicle on a warm day! The temperature inside a normal kitchen freezer is around -18 degrees Celsius (0 °F), but there are temperatures that get much colder than that. The coldest outdoor temperature ever recorded on Earth is -94.7 °C (-135.8 °F). In space, things get even colder: scientists have measured temperatures as low as -270 °C (-454 °F) there.

We know that the temperature outside can feel warm or cold to us, but what is temperature actually telling us? Temperature is related to the average speed of the molecules of an object or material. Molecules are constantly moving around. When an object’s molecules move at faster speeds, the object has a higher temperature. When an object’s molecules move at slower speeds, the object has a lower temperature.

Is there a limit to how cold things can get? Yes! This is because temperature is determined by average molecular movement, and there is a limit to how slowly something can move. After all, if something slows down completely, it just stops moving.
What would happen if the molecules in a sample stopped moving entirely? If none of the molecules were moving, then the average speed of the molecules would be zero. This means that the sample would be at absolute zero, a temperature of -273.15 °C (-459.67 °F). Absolute zero is the coldest possible temperature—the temperature at which there is absolutely zero molecular movement. Scientists realized over 350 years ago that absolute zero could exist, but nobody has succeeded in demonstrating it. It may not be possible to reach absolute zero, but that hasn’t stopped scientists from trying.

The temperature of something is determined by how fast its molecules are moving. The molecules in the cold water on the left are moving slowly, as indicated by the short motion tails on the molecules. The molecules in the hot water on the right are moving more quickly, indicated by the long motion tails on the molecules.

Comprehension Questions:

C. Which of the following would be true if something was at absolute zero? (circle one)
 a. The molecules that make up a sample wouldn’t be moving.
 b. The molecules that make up a sample would be moving very slowly.
 c. The molecules that make up a sample would be moving very fast.

D. If the molecules of a sample speed up, what else happens? (circle one)
 a. The temperature of the sample decreases.
 b. The temperature of the sample increases.
 c. The temperature of the sample stays the same.

Draw a picture of what you think the “motion tails” of the molecules in the following substances might look like (you can see an example of what “motion tails” look like in the pictures above):

E. A cup of orange juice that’s been out on the counter for a day and a cup of orange juice that’s been in the fridge all day.
F. A substance at absolute zero
Activity 3: Using Models: How is energy transferred? (30 min)

[Adapted from: Rice University, CNX Chemistry 5.1 Energy Basics]

Useful Vocabulary:
- **Molecule**: a group of atoms joined together in a particular way
- **Transfer**: to move from one object to another or one place to another
- **Kinetic energy**: energy that an object has because it is moving
- **Equilibrium**: a balanced state in which a system is stable, such as when two or more samples are at the same temperature

Use the useful vocabulary to help answer the following questions on a separate sheet of paper.

A. **What do you notice?** Write at least **3 observations** you have about figures 1 and 2.
B. **What do you wonder?** Write at least **2 questions** you have about figures 1 and 2.
Use the information from the models above to fill in the blanks in the following statements.

C. Before the samples came into contact, the temperature of Sample A was __________________ the temperature of Sample B. (circle one)
 - higher than
 - lower than
 - the same as

D. In Model #1, before coming into contact, the molecules of Sample A had __________________ the molecules of Sample B. (circle one)
 - more kinetic energy than
 - less kinetic energy than
 - the same kinetic energy as
E. In Model #4, the energy stopped transferring, the molecules of Sample A had ____________ the molecules of Sample B. (circle one)
 - more kinetic energy than
 - less kinetic energy than
 - the same kinetic energy as

F. Once the energy stopped transferring, the temperature of Sample A was ________________ the temperature Sample B. (circle one)
 - higher than
 - lower than
 - the same as

G. Why did the transfer of energy between the two samples stop?

Demonstrate and explain energy transfer to a member of your household while holding a cup of warm water.

H. You might need to explain how temperature and kinetic energy are related.

I. Draw a picture to help explain your ideas.

Activity 4: Reading: “Air Conditioning” (30 min) [Adapted from: Amplify Science Thermal Energy Lesson 2.2]

Vocabulary Review:
- Molecule: a group of atoms joined together in a particular way
- Transfer: to move from one object to another or one place to another
- Kinetic energy: energy that an object has because it is moving
- Equilibrium: a balanced state in which a system is stable, such as when two or more samples are at the same temperature

A. Read, How Air Conditioners Make Cities Hotter, and highlight or annotate any information that might help you answer the questions below.

How Air Conditioners Make Cities Hotter [Source: Amplify Science Thermal Energy Unit]

On a hot day, walking into an air-conditioned building feels great. You can leave all that hot air outside! Air conditioning makes the air inside a building cooler, keeping you from turning into a sweaty mess during hot weather.

How do air conditioners work their magic? Air is made of molecules, and the temperature of air is all about the speed of its molecules. Differences in air temperature are caused by differences in the energy of the molecules that make up the air - and the amount of energy those molecules have has to do with how fast they’re moving. Air conditioners cool air by slowing molecules down.

Unfortunately, the magic of air conditioning has a dark side. Air conditioners cool the air inside, but they make the air outside even hotter! Air conditioners can actually make heat waves worse. An air
conditioner uses machines and chemicals to remove kinetic energy from the molecules that make up the air inside a room. This slows the molecules down and lowers the room’s air temperature. However, energy can’t be created or destroyed: it can only be transferred from one place to another. The energy that was in those molecules doesn’t just disappear - it gets transferred to molecules in the air outside. This causes the air outside to warm up through a series of collisions between faster and slower molecules. As faster molecules bump into slower ones, kinetic energy transfers to the slower-moving molecules, causing them to speed up. When the molecules of the air speed up, the air temperature rises.

When you run an air conditioner, you’re making it hotter outside by transferring energy from the air inside a building to the air outside the building. The air inside and the air outside are two parts of one system, connected by the air conditioner - changes in one part of the system affect the other part. In fact, one study showed that on hot nights when many people in the same town run their air conditioning, the temperature outside is about 1 degree Celsius (1.8 degrees Fahrenheit) hotter in that town than it would be otherwise. This rise in temperature means people use their air conditioning even more, and it can make things even worse in cities where the climate is already hot.

This kind of energy transfer doesn’t just apply to hot buildings: it also applies to hot foreheads! Have you ever been sick with a fever, and wished you could do something to feel better? When you have a fever, one way to feel some relief is to soak a washcloth in cool water and lay it across your forehead. Some of the energy from your warm skin transfers to the cool washcloth. When two things of different temperature come into contact, the warmer one will always transfer energy to the cooler one - in this case, your warm forehead transfers energy to the cool washcloth.

How does that energy transfer actually happen? Since we know what happens to molecules when matter changes temperature, we can infer that the molecules collide with one another as they move. At the moment of collision, energy transfers from the molecule with more kinetic energy to the molecule with less. The fast-moving molecules of your hot forehead bump into the slow-moving molecules of the washcloth, transferring kinetic energy from your forehead to the washcloth. Your skin cools as the molecules of your forehead slow down, while the washcloth gets warmer as its molecules speed up.
You can think of your forehead and the washcloth as two parts of the same system. Energy is transferred from one part of the system (your forehead) to another (the damp washcloth). As the temperature of your forehead drops, you feel better! However, that same washcloth won’t keep you cool forever. Eventually, so much energy will transfer from your forehead to the washcloth that the washcloth and your forehead will be the same temperature, and energy will stop transferring away from your forehead. When that happens, it’s time to get a new, cool washcloth so that this energy transfer can keep going and you can keep getting relief!

Whether you are cooling a room or your forehead, you need to transfer energy to do it. When one thing cools down, something else has to warm up. Since energy cannot be created or destroyed, a change in temperature always means energy has been transferred - it always comes from somewhere and goes somewhere else.

Comprehension Questions:
B. What best explains how air conditioners can make a heat wave worse? (circle one)
 a. Energy removed from the air inside is transferred to the air outside.
 b. Hot air is blown out of a building using fans, warming the air outside.
 c. Chemicals that cool air inside react differently with outside air to warm it.
 d. Air conditioners destroy energy inside the building, and that process warms air outside the building.

C. Highlight/underline evidence in the text that supports your answer to B.

D. Which of the following statements are true about the way thermal energy moves in a system? (select all that apply)
 a. Thermal energy moves from warmer things to cooler things.
 b. Thermal energy moves from cooler things to warmer things.
 c. When one thing cools down, another thing has to heat up.
 d. Energy can be destroyed if the temperature gets hot enough.
 e. Energy is transferred as molecules collide with each other.

For each choice in question D (a, b, c, d, and e):
E. Locate and underline evidence in the text that either supports or refutes (contradicts) each statement.

F. Annotate the text you underlined as follows:
 ● Write the appropriate letter from question D next to the text you underlined.
 ● Write “supporting evidence” or “refuting evidence” next to the text you underlined.

Activity 5: Analyzing Data: Temperature vs. Thermal Energy (20 min)
[Adapted from: Amplify Science Thermal Energy Lesson 1.4]

Let’s investigate the difference between temperature and thermal energy!

What is temperature?
- **Temperature** is the average kinetic energy of a substance.
- **Thermal energy** is the total amount of kinetic energy of a substance. Thermal energy is NOT the same as temperature!
To calculate the total kinetic energy of something, add up the kinetic energy of all of its molecules. Even when something has a low average kinetic energy (temperature) and isn’t very warm, it can have a high total kinetic energy (thermal energy) if it has a whole lot of molecules.

Take a look at Sample A and Sample B below as an example.

- Sample A has the same temperature as Sample B because the average kinetic energy of all the molecules is the same.
- Sample A has less thermal energy than Sample B because there are fewer molecules, so the total kinetic energy is less.

To calculate the thermal energy, add the kinetic energy of all the molecules together.

To calculate the temperature, find the average of the kinetic energy of the molecules (HINT: Review the example to the right to find the average).

A. Analyze the two diagrams and complete the table below:

<table>
<thead>
<tr>
<th>Average kinetic energy (kJ)</th>
<th>Diagram 1</th>
<th>Diagram 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total kinetic energy (thermal energy) (kJ)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Image from: https://www.unf.edu/~n00006757/astronomylectures/equant6a.htm]
B. What can you conclude about the temperature of the samples in Diagram 1 and Diagram 2?
Circle one:
a. The sample in Diagram 1 has a higher temperature than the sample in Diagram 2.
b. The sample in Diagram 2 has a higher temperature than the sample in Diagram 1.
c. The samples in Diagram 1 and Diagram 2 have the same temperature.

Activity 6: What is going on with Andre’s soup? (20 min)
[Adapted from: Amplify Science Thermal Energy Lesson 3.1]

Remember Andre and the soup he made for his brother and himself? He made a pot of soup for lunch and served a big bowl for himself and a small mug for his little brother.

The soup is much too hot to eat right away, so Andre grabs two ice cubes from the freezer and drops one into his bowl and one into his brother’s bowl. Once the ice cubes have melted, Andre sips a spoonful of soup from the bowl. The temperature is perfect. His brother takes a sip from his mug, and he makes a face. “It’s cold,” he says. Andre checks, and it really is cold! What happened? How can Andre’s soup be perfect and his brother’s be too cold if they were the same temperature to start with and the same amount of ice was added to each?

- **Claim 1**: More energy was transferred from the cup of soup to the ice cube in the little brother’s mug, making his soup cooler.
- **Claim 2**: Andre’s bowl has more soup, so it has more total thermal energy, therefore the ice didn’t lower the temperature as much.
- **Claim 3**: Andre’s bowl helped keep more thermal energy in the soup, but his brother’s mug transferred more thermal energy out of his soup.

A. On a separate piece of paper, state which claim you agree with the most and provide at least 3 pieces of evidence from Activities 2 - 4 to support your thinking.
Grade 6-8 Social Science Project: Celebrating Everyday Heroes

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 70-80 minutes (average of 15-20 mins per activity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level Standard(s)</td>
<td></td>
</tr>
</tbody>
</table>
| **Standards for Grades 6-8:** | SS.IS.3.6-8: Determine sources representing multiple points of view that will assist in organizing a research plan.
SS.IS.4.6-8.MdC: Determine the credibility of sources based upon their origin, authority and context.
SS.IS.5.6-8.MdC: Identify evidence from multiple sources to support claims, noting its limitations.
SS.IS.6.6-8.MdC: Construct explanations using reasoning, correct sequence, examples and details, while acknowledging their strengths and weaknesses. |
| **Caregiver Support Option** | Notes on the structure:
- Activities are designed to be done in order - each one builds on the other so you should not skip activities
- Activities are an average of 15-20 mins each. More than one can be done in a day.
Before giving the activities to students, caregivers might:
- Spend time reading and discussing the “student directions” together. Encourage them to ask any clarifying questions.
- When reading the texts, students should circle or underline any unfamiliar words so you both can define them together
In this particular lesson, it’s important to note that:
- **Students may not know what a trading card is, so find an example to show to the child.**
- **Caregivers may want to review what the student feels makes a hero.** |
| **Materials Needed** | Writing tool, paper |
| **Question to Explore** | How can we celebrate our everyday heroes? |
| **Student Directions** | There are heroes all around us. In this week’s inquiry, students think of a person in their family, community, or larger world who is making a difference right now. They identify a heroic trait or talent, then use words, pictures, and a heavy dose of exaggeration to cast this person as a tall-tale character. Throughout the week, they’ll use their learning to create a “Tall-Tale Trading Card” that describes their hero in larger-than-life terms. |
Day 1 (Activity 1): Exploring Tall Tales (15-20 min)

This week we’re thinking about the question: "How can we celebrate our everyday heroes?"

Your challenge this week - Create a “Tall-Tale Trading Card” that describes the special traits and talents of your personal hero.

Today you will:
- Explore special traits of tall-tale characters
- Recognize and create exaggerations
- Pick a personal hero

You will need:
- Paper or notebook
- Writing tool
- “Everyday Heroes” handout

Let’s Get Started!

Activity 1: THINK - Look at this postcard. Ask yourself:

What’s going on here?
What seems real?
What seems fake?

Tall-tale postcards like the one in the picture were made by putting together different photos to make unbelievable scenes, like a corn cob so big that it took a horse-drawn cart to move it! Like the postcards, stories called tall tales were popular in the United States in the 1800s and early 1900s. These tales were exaggerated, meaning that people and events were made to seem much larger or greater than they really were.

New Words
- tall tale: a story about a larger-than-life character, sometimes based on a real person, who has exaggerated adventures
- Exaggerated: described as larger or greater than is true

Activity 2: EXPLORE - This picture shows a statue of a tall-tale character.
- What’s something you notice about it?
- How would you describe the person in it?

The statue is of a tall-tale character named Paul Bunyan, a mighty lumberjack. People began to tell many stories about the lumberjacks of North America in the late 1800s, when the Western United States was first being settled. At this time, lumberjacks did the work of cutting down trees so that towns and farms could be created.
Read these larger-than-life descriptions from *Paul Bunyan, American Hercules* (1937).

- “So great was his lung capacity that he called his men by blowing through a hollow tree. When he spoke limbs sometimes fell.”
- “For a big man, Paul was very quick on his feet. He could go to one end of his house, blow out the light and get into his bunk before it got dark.”
- “Lumberjacks say that he is the man who cleared all the trees out of North Dakota. He also scooped out the hole for Lake Superior.”

A. What do these exaggerations tell us about the character of Paul Bunyan?

B. What do they tell us about what people might have valued during this time period?

C. OPTIONAL Watch this short video ([Paul Bunyan, American Hercules](https://youtu.be/C-zKKoHvXn0)) which shares some tall tales about Paul Bunyan. See if it confirms or changes your thinking.

If you are unable to watch the video: This tall tale makes Paul Bunyan seem superhuman in strength, skill, and size. All of these traits were important for lumberjacks living and making homes in wild, forested areas.

New Word

- **Trait:** A quality that makes one person different from another

Activity 3: DO - Your challenge this week: Create a “Tall-Tale Trading Card” that describes the special talents and traits of a real-life hero. Today, you’re going to choose your real-life hero! A trading card – like this one of Paul Bunyan – usually contains a picture of a person with some important facts about them. People often collect or trade these cards with other people. The trading card you create will describe a real-life hero. This might be a person in your own family, your community, or anywhere in the world.

Think about: Who are the heroes in your life?

- What makes them special? What trait or talent do you admire about them?
 - Are they strong like Paul Bunyan?
 - Do they have a skill or talent?
 - Is there something else special about them, like kindness or courage?

A. Make a list of the heroes in your life (or use the "Everyday Heroes" handout if you like)

B. Write: Make a list of three people that you think are heroes in your life.

C. Write: Include an important trait or talent for each person.

D. Talk: Choose one of the heroes from your list.

E. Practice talking about your hero in an exaggerated way.

F. Need help? Look at the example below. Notice how each sentence about Paul Bunyan is a bigger exaggeration! Can you do the same with your hero?

- 1st try: Paul Bunyan is so strong he can cut down a forest by himself.
- 2nd try: Paul Bunyan is so strong he can clear a forest with one swing of his axe.
- 3rd try: Paul Bunyan is so strong he can clear a whole forest with one swing of his axe, or sometimes with just a sneeze!
Activity 1: List the names of a person you admire in your family, local community, or the larger world. Think about celebrities, athletes, artists, leaders, and people making a difference in the world right now. Write an important trait or talent for each person.

<table>
<thead>
<tr>
<th>Person</th>
<th>Trait or Talent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity 2: Now choose 1 of the 3 people and tell their story out loud using this sentence frame. No need to write yet, this is a thinking exercise! **(Name) is so (describe trait or talent), they (exaggeration)!**
- Now try that sentence frame, exaggerating the trait or talent to make it more unbelievable!
- Now try that sentence frame one more time, getting even wilder and harder to believe!

Activity 3: Write your final sentence here:

___ is so __,

(name) is so ________________________________.

they __!

(exaggeration)

Day 2: Imagining Your Hero (15-20 min)

This week we're thinking about the question: "**How can we celebrate our everyday heroes?**" Your challenge this week: - **Create a “Tall-Tale Trading Card”** that describes the special traits and talents of your personal hero.

Today you will:
- Investigate what makes a story into a tall tale
- Explore the story of John Henry
- Create a “Trading Card Plan”

You will need:
- Paper or notebook
- Writing tool
- “Trading Card Plan” hand out (optional)

Activity 1: THINK - While tall tales could be outrageous and funny, they also served an important purpose. Characters showed qualities like strength, courage, and cleverness, all of which were important in rugged landscapes and dangerous times in US history. These stories provided examples of people coping with hardships and overcoming challenges. Some historians say they also helped to create a shared history for a new nation. Tall tales did include things that were unreal, but some tall tales were based on real people who did amazing things.
<table>
<thead>
<tr>
<th>Name</th>
<th>Fact</th>
<th>Exaggeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Calamity Jane”</td>
<td>Martha Jane Canary worked as a Pony Express rider, carrying mail by horseback over 50 miles of rough terrain and across rivers. She was known for being tough and fearless, as well as good at horse racing.</td>
<td>Calamity Jane was so good at roping cattle that she could knock a fly off a cow’s ear with a 16-foot whiplash.</td>
</tr>
<tr>
<td>Real name: Martha Jane Canary Lived 1852-1903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Johnny Appleseed”</td>
<td>John Chapman was a religious man and a businessman who planted nurseries of apple trees on the western frontier. He was known for his wilderness skills and his love of sleeping outdoors.</td>
<td>Johnny Appleseed walked across the wilderness of the United States, wearing no shoes, a burlap sack, and a tin pot hat, scattering apple seeds in the wind.</td>
</tr>
<tr>
<td>Name: John Chapman Lived 1774 – 1845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Davy Crockett”</td>
<td>David Crockett was a politician and soldier who died at the famous Battle of the Alamo in Texas. He was known as a very skilled frontiersman and hunter.</td>
<td>Davy Crockett killed a bear when he was three years old.</td>
</tr>
<tr>
<td>Name: David Crockett Lived 1786 – 1836</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity 2: EXPLORE - Let’s dig deeper into a tall tale based on a real person named John Henry. He helped to build the railroads in the mid-1800s. To build the railroads, people needed to dig tunnels and create paths through mountains.

Look at this picture of people standing in front of a railroad tunnel they helped to dig.

- If they didn’t have big machines to help them, how do you think they could dig these tunnels?
- What kind of special traits or talents would help someone do this work?
This picture shows a statue of John Henry.

- How would you describe how John is represented in the statue?
- Why do you think someone like John would be a hero to railroad workers?

John Henry worked on the railroads as a steel driver. To dig tunnels, steel drivers like John would swing their hammers as hard as they could to pound a drill into rock. Then, those holes would be filled with dynamite and the rock would be blasted away. The companies that built the railroads needed steel drivers to work hard and fast. These companies were racing each other to build railroad systems across the United States. Thousands of people worked on building the railroads. It was very hard and dangerous work, and workers did not get paid very much for doing it.

In 1870, railroad workers began to dig the Great Bend Tunnel in the area now known as West Virginia. While digging the tunnel, John Henry competed against the steam drill and won! If you were making a “Tall Tale Trading Card” for John Henry, what would it look like?

A. How would you fill in these blanks?
 - Name:
 - Trait or Talent:
 - Tool:
 - Setting:
 - Known For:

B. **OPTIONAL**: Watch this short video that tells the story of John Henry’s race against a machine called a steam drill. (https://vimeo.com/114170305) As you watch, ask yourself: Why do you think John Henry became a symbol for African-American railroad workers?
 - **If you are unable to watch the video**: This tall tale makes John Henry seem superhuman in strength, skill, and size. All of these traits were important for steel drivers living and competing against the increasing use of machines to build railroad systems. Isn’t it amazing that people still tell John Henry’s story today?

Activity 3: DO - Keep in mind your challenge this week: Create a “Tall-Tale Trading Card” that describes the special talents and traits of a real-life hero. Today, you will choose one of your everyday heroes and make a “Trading Card Plan.”

A. Think back to the list you made of three people you think are heroes. Do you remember choosing one of those heroes and making up exaggerations about them?

The plan you create today will show that hero’s important trait or talent in an exaggerated way.

Goals: Your “Trading Card Plan” should show:
- A real person who is a hero in your eyes
- A special trait or talent that has been exaggerated
- Words and pictures that show the person’s actions in an exaggerated way
- Details that reflect the time and place
C. Now it’s time to create your “Trading Card Plan.” Make sure to include:

- Hero Name:
- Trait or Talent:
- Tool:
- Setting:
- Known For: (Hint: This is your exaggeration!)
- Sketch:

D. Write it out on a piece of paper or use the “Trading Card Plan” handout. Remember to save your “Trading Card Plan” so you can use it when you make your “Tall-Tale Trading Card.”

Trading Card Example

Name: Paul Bunyan
Trait or Talent: Strength
Tool: Axe
Setting: Forest
Known for: (Hint: This is your exaggeration!)

Paul Bunyan is so strong he can clear a whole forest with one swing of his axe, or sometimes with just a sneeze!

Sketch:

Trading Card Plan Handout

Name:
Trait or Talent:
Tool:
Setting:
Known for: (Hint: This is your exaggeration!)

Sketch:
Day 3: Evaluating the Work (15-20 min) "How can we celebrate our everyday heroes?"

Activity 1: THINK You’ve already created your “Trading Card Plan” describing your hero in words and pictures! When someone sees your plan, they should learn about:
- A real person who is a hero to you
- Your hero’s special trait or talent (exaggerated by you!)
- Details that reflect time and place

Activity 2: EXPLORE
A. Look at this student’s “Tall-Tale Trading Card.”
 - Does this work seem to show a real person?
 - Does this work seem to show a special trait or talent that has been exaggerated?
 - Do words and pictures show the person’s actions in an exaggerated way?
 - Are there details that reflect time and place?

B. Now imagine we have the chance to give another student feedback on their work to make it stronger and clearer.
 - What advice would you give the artist to make this work even stronger?
 - The student could add...
 - The student could try...
 - The student could change...

Activity 3: DO - Keep in mind your challenge this week: Create a “Tall-Tale Trading Card” that describes the special traits and talents of your personal hero. Today, you will explore your "Trading Card Plan" to check if you are meeting your goal. Pencils down! This is a thinking exercise!

A. Look at your work and ask:
 - What parts show who my hero is?
 - What parts show my hero’s trait or talent?
 - What parts show that I’ve exaggerated my hero’s trait or talent

B. Wait, still don’t touch your work! First, make a work plan! Complete one of these sentences:
 - I will add...
 - I will try...
 - I will adjust...

Be sure to save your "Trading Card Plan" so you can use it to create your “Tall-Tale Trading Card."
Day 4: Finalizing the Work (15-20 min) "How can we celebrate our everyday heroes?"

<table>
<thead>
<tr>
<th>Today you will:</th>
<th>You will need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Finish creating your</td>
<td>● Your work from previous activities</td>
</tr>
<tr>
<td>"Tall-Tale Trading Card"</td>
<td>● Writing tool</td>
</tr>
<tr>
<td></td>
<td>● A sheet of paper or large index card</td>
</tr>
<tr>
<td></td>
<td>● "Tall Tale Trading Card Template" handout, (optional)</td>
</tr>
<tr>
<td></td>
<td>● Coloring materials (optional)</td>
</tr>
</tbody>
</table>

Activity 1: THINK - It’s time to take steps to finalize your work based on your work plan. Remember your work plan? That’s when you said:

- I will add...
- I will try...
- I will adjust...

A. Decide or discuss: **What will you do next to finalize your work?**

Activity 2: EXPLORE - Check out a “Tall-Tale Trading Card” created by another student.

A. What changes did this person make to their work?

B. How do these changes help you understand more about their tall-tale character?

First Draft

Card Plan

- **Name:** Dr. Action and Governor Dewine
- **Trait or Talent:** Protecting Ohio Smart Leader
- **Tool:** Science
- **Setting:** Ohio 2020
- **Known For:** (Hint: This is your exaggeration/unbelievable fact.) Protecting Ohio

Sketch it:

- Stay home.
- Flatten the curve.

Final Draft

Card Plan

- **Name:** Dr. Action and Governor Dewine
- **Trait or Talent:** Smart Leader
- **Tool:** Science
- **Setting:** Ohio 2020
- **Known For:** Protecting Ohio
Activity 3: DO - Today, you will work to finalize your “Tall-Tale Trading Card”.
A. Get out a new sheet of paper or large index card. You could also use the "Tall Tale Trading Card Template" handout.
B. Get out your "Trading Card Plan" and any other materials from previous activities.
C. Think about your work plan and get to work making your final draft.

Day 5: Reflecting and Sharing (15-20 min) "How can we celebrate our everyday heroes?"

<table>
<thead>
<tr>
<th>Today you will:</th>
<th>You will need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Think about how your “Tall-Tale Trading Card” turns a real-life person into a larger-than-life character</td>
<td>• Your finished “Tall Tale Trading Card”</td>
</tr>
<tr>
<td>• Find a way to share your final work</td>
<td>• “Sharing” handout (optional)</td>
</tr>
</tbody>
</table>

Activity 1: THINK - Ordinary people became heroes of tall tales in the past. Just imagine: your hero might inspire a tall tale in the future!

Activity 2: EXPLORE - Look at your finished “Tall-Tale Trading Card.” Think about or discuss:
• How would you explain the choices you made in designing your trading card to someone else? Why is it important to celebrate our everyday heroes?
• What do you hope people will understand about your hero by looking at your trading card?

Activity 3: DO - Now that you’ve completed your “Tall-Tale Trading Card,” it’s time to share your work with others! Here are some ideas for connecting with others:
A. Share with a family member and...
 ○ Help them to create their own.
 ○ Ask them if they have comments, questions, or a connection to your work (or use the “Sharing” handout to get a written response).
B. Ask an adult to help you share your work online with the hashtag #inquiredtogether.
C. Send your “Tall-Tale Trading Card” to the person you represented.
D. Hang your “Tall-Tale Trading Card” in the window.
E. Keep your “Tall-Tale Trading Card” somewhere safe as a historical record that you and others can look back on later.
DAY 5 - Sharing Handout - Please take a look at my work and fill this out. I have a... (circle one)

Cross Content Connection: By examining tall tales and characters used in history, from Paul Bunyan to Johnny Appleseed, and by developing your own character, you are using many social science skills, but also so much more! There are so many connections to language arts, math and science that you can continue to explore. Here a few ways to extend your learning and make connections to other subjects.

- **Math:** Create word problems for younger students to use that INCLUDE your characters in everyday life! Help the younger students practice their math facts by designing a few questions that include the use of your character and others.

- **Science:** Research the area of the world that your character lives in (or lived in). Describe the climate and physical features of that area. How might those things impact your character?