Hello Students,

This resource packet includes multiple projects that you can work on independently at home. Each project can be completed over multiple days, and the projects can be completed in any order.

Additional enrichment activities are also available and organized into Read, Write, Move, Design, and Solve categories to engage you in learning in many different ways while at home. Please be sure to also pick up an enrichment packet for access to these activities.

Use the table of contents on this page to navigate through the project packet.

Eighth Grade Literacy Project: Using Poems as Inspiration for Our Poems 1
Eighth Grade Math Project: Predicting Temperatures 7
Eighth Grade Science Project: The Gravity Light 14
Eighth Grade Social Science Project: Exploring Identity 32
Eighth Grade Literacy Project: Using Poems as Inspiration for Our Poems

Estimated Time: Total Time 120-130 minutes

Grade Level Standard(s):
- RL.8.1 Cite the textual evidence that most strongly supports an analysis of what the text says explicitly as well as inferences drawn from the text.
- RL.8.2 Determine a theme or central idea of a text and analyze its development over the course of the text, including its relationship to the characters, setting, and plot; provide an objective summary of the text.
- W.8.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (Grade-specific expectations for writing types are defined in standards 1-3 above.)

Caregiver Support Option:
- Have your child read the poems to you
- Read the poems to your child
- Write a poem

Materials Needed:
- Paper
- Pen
- Pencil

Question to Explore: How can a writer use inspiration from other poems to write an original piece?

Student Directions:
In this project, you will learn how writers take inspiration from other poems to make them their own. First, you will read and analyze a pair of poems that use the “Golden Shovel” technique. Then, you will read another pair of poems, one inspired by the other and analyze those. Finally, you will choose a “striking line” from a poem you read and write an original “Golden Shovel” poem.

Activity 1: What is Golden Shovel Poetry?
The Golden Shovel is a new poetic form. Terrance Hayes came up with the style to pay homage to Gwendolyn Brooks. The last words of each line in a Golden Shovel poem are, in order, words from a line or lines taken from another poem. After Terrance Hayes, many authors now write Golden Shovel poems. In “The Golden Shovel” below, pay attention to the words at the end of each line, to find the hidden lines from Gwendolyn Brooks’ poem.

Throughout this project you will read the first Golden Shovel poem, which gave the form its name, and other poems that were written using this technique. Later, you will choose a favorite line from a poem, and create your own Golden Shovel.

A. First, read the poem “We Real Cool” by Gwendolyn Brooks. Circle and connect the words that
rhyme. Underline places where you hear repetition. Try reading this poem out loud several times to find its rhythm.

“We Real Cool” by Gwendolyn Brooks

We real cool. We
Left school. We

Lurk late. We
Strike straight. We

Sing sin. We
Thin gin. We

Jazz June. We
Die soon.

B. Answer the following questions on notebook paper:
 ● How does the poet view the pool players? Does she blame them or have empathy for them?
 ● How does the writer use repetition? What effect does this have?
 ● How does the writer use rhyme? What effect does this have?

C. Read the first section of “The Golden Shovel” by Terrance Hayes. Read out loud. Underline details that stand out to you and help you hear the poem’s tone.

The Golden Shovel
BY TERRANCE HAYES

When I am so small Da’s sock covers my arm, we cruise at twilight until we find the place the real men lean, bloodshot and translucent with cool. His smile is a gold-plated incantation as we drift by women on bar stools, with nothing left in them but approachlessness. This is a school I do not know yet. But the cue sticks mean we are rubbed by light, smooth as wood, the lurk of smoke thinned to song. We won’t be out late. Standing in the middle of the street last night we watched the moonlit lawns and a neighbor strike his son in the face. A shadow knocked straight
Da promised to leave me everything: the shovel we used to bury the dog, the words he loved to sing

his rusted pistol, his squeaky Bible, his sin.
The boy’s sneakers were light on the road. We

watched him run to us looking wounded and thin.
He’d been caught lying or drinking his father’s gin.

He’d been defending his ma, trying to be a man. We stood in the road, and my father talked about jazz,

how sometimes a tune is born of outrage. By June the boy would be locked upstate. That night we

got down on our knees in my room. If I should die before I wake. Da said to me, it will be too soon.

D. Answer the following questions on notebook paper:
 ● Who is the narrator of this poem? What do you learn about the narrator from reading this poem?
 ● How does the writer use repetition? What effect does this have?
 ● Copy the last word of each line in Hayes' poem? What do you notice?
 ● How has Hayes used Brooks' poem as inspiration?

You probably noticed that every word from Brooks’s poem "We Real Cool?" shows up, in order, in the last word in each line of Hayes' poem "The Golden Shovel"! In the next activity you will see another example of this form of poetry.

Activity 2: Another example of a “Golden Shovel” poem

A. Read “We Wear The Mask: by Paul Laurence Dunbar. As you read the poem, look for examples of figurative language and sensory details. Think about what these devices reveal about the poem's theme. This is another great poem to read out loud!

“We Wear The Mask”: by Paul Laurence Dunbar

We wear the mask that grins and lies,
It hides our cheeks and shades our eyes, —
This debt we pay to human guile;
With torn and bleeding hearts we smile,
And mouth with myriad subtleties.

Why should the world be over-wise,
In counting all our tears and sighs?
Nay, let them only see us, while
We wear the mask.

We smile, but, O great Christ, our cries
To thee from tortured souls arise.
We sing, but oh the clay is vile
Beneath our feet, and long the mile;
But let the world dream otherwise,
We wear the mask!

B. Answer the following questions on notebook paper:
 ● Who is the narrator?
 ● Why must the people (the “we” mentioned) wear the mask?
 ● How would you describe the tone?
 ● What is a central theme of the text? What might it be saying about how people overcome hard times?

C. Read “Jabari Unmasked” by Nikki Grimes. Note how Grimes uses words from Dunbar’s poem in her poem. These are the words in bold. This is another golden shovel poem!

“Jabari Unmasked” by Nikki Grimes

Fresh out of middle school, we
all understand the rules: wear
whatever’s in, scowl on cue to convince the
world we’re fearless — anything to mask
the million insecurities that
Pockmark our skin like acne. Gone the grins
when we strut down the hall. We talk tough and
hope to God it’s enough to get us by. It’s all lies.

We despise the masquerade. It
may disguise our fears, but also hides
our kind and tender hearts, our
agile minds, the wit that sits behind our cheeks —
who’d guess that some of us are geeks and
nerds and poets, too? Clothed in shades
of chocolate skin, our color works to camouflage our
character and promise — at least, in certain eyes.

D. Answer the following questions on notebook paper:
● What does the “masquerade” represent in the poem (Line 9)?
● How do you relate to the experiences that Nikki Grimes describes in the poem? Do you think that the speaker’s suggestion to use poetry to deal with oppression is a helpful one? Why or why not? Answer on notebook paper.
● In the context of the poem, why do people follow the crowd? Why does the speaker feel compelled to hide their identity or present it in a certain way? Cite evidence from this text, your own experience, and other literature, art, or history in your answer. Answer on notebook paper.

E. Compare “We Wear the Mask” and “Jabari Unmasked” and answer the questions on notebook paper.
● How has Grimes used Dunbar’s poem as inspiration?
● How are these poems similar in theme? How are they different?

Activity 3: Writing a Golden Shovel Poem
A. Choose a favorite line or stanza from any of the poems above to write a “Golden Shovel” poem of your own. Consider:
 ○ Which “striking line” stands out to you?
 ○ Why does it resonate with you?
 ○ What type of poetic devices did you notice?
B. Write your poem: take your favorite line and write it one word at a time down the right side of your paper. Then write lines of poetry that end with the words written on the right side of the paper. Make sure your poem tells its own story.
C. Check your draft: does your favorite line appear, word for word, at the end of the lines in the new poem?
D. Re-read the original poem. What revisions can you make to match the tone? What poetic devices could you add?
Activity 4: Reflection

A. Great job!! You have synthesized, analyzed, compared and contrasted a variety of poems from different eras. Answer this question: How can a writer use inspiration from other poems to write an original piece? Give at least two examples from the poems you read to support your answer.

B. Think about how you can use the “Golden Shovel” technique with an excerpt from your favorite novel or a line from a magazine, song, or newspaper. Give it a try!

Cross Content Connection:

- Music: Make a five song playlist for the original “Golden Shovel” poem that you wrote.
- Performing Arts: Host a poetry reading! Recite the poem from which you borrowed the “striking line” (with special emphasis given to that line), followed by your original “Golden Shovel” poem.

Digital Connection: Watch and animation of We Real Cool at https://www.poetryfoundation.org/video/142394/we-real-cool
Watch Nicki Grimes read Jabari Unmasked at https://www.youtube.com/watch?v=DEPiCGkV4U&feature=youtu.be

Sources: Thepoetryfoundation.org; commonlit.org
<table>
<thead>
<tr>
<th>Grade Level Standard(s)</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.F.A.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. Function notation is not required in Grade 8.</td>
</tr>
<tr>
<td></td>
<td>8:F.B: Use functions to model relationships between quantities.</td>
</tr>
<tr>
<td></td>
<td>8.SP.A: Investigate patterns of association in bivariate data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caregiver Support Option</th>
<th>Discussing with student observations about weather, average temperatures in various cities in North America, and interpreting a data table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Needed</td>
<td>Paper, graph paper, calculator, pencil, colored pencils</td>
</tr>
<tr>
<td>Question to Explore</td>
<td>What is the relationship between latitude and temperature?</td>
</tr>
<tr>
<td>Student Directions</td>
<td>In thinking about factors that influence weather, you will identify the data to collect and define the variables that best represent the model. You will look at a particular measure of temperature and analyze data to see if there is an association. You will use that data to create a scatter plot, draw a line of best fit, and write an equation to represent the model. Finally, you will use the fitting line and equation to make predictions and answer questions about the association between latitude and temperature.</td>
</tr>
</tbody>
</table>

Adapted from IllustrativeMathematics Open Up Resources

Activity 1: What influences temperature?
A. Brainstorm - On a sheet of paper, make a list of factors that influence temperature. For example, one factor could be time of day. Often, after sunrise, the temperature increases until early afternoon, when it reaches its high, then begins to decrease into the evening.
 ● Extension: For each factor, describe how changing it could change the temperature.

B. Thinking about Latitude
 1. Understanding Latitude: Latitude is a measure of how far north or south a location is in relation to the equator. The unit of measure is degrees north or degrees south. See diagram below:
Any location on the Equator is 0°. The North Pole is located at 90° N. For the purposes of this activity, we will be looking at locations at 47.6° N.

- On your paper: What predictions can you make about the outside temperatures of locations at this latitude? Will all locations have the same temperature? If so, why do you think that? If not, what would cause the temperatures to be different?

2. Analysis: To say that “temperature is a function of latitude” means that if you know the latitude of a location, you can predict the temperature. Study the image below. Does it support the statement “temperature is a function of latitude”? Why or why not? What could account for the temperature difference between Seattle and Spokane, both of which lie at the same latitude?

3. In light of the above information, we need to decide whether it is possible to define latitude and temperature in a way that makes sense to talk about temperature as a function of latitude. Read each of the statements below. Each one explains temperature in a different way in relation to latitude.

On a piece of paper, list some advantages and disadvantages of each statement.

a. Finding the temperature right now in cities with different latitudes.
 Example Answer: The answers might not depict an overall pattern, as temperatures are influenced by local weather and time zones.

b. Finding the daily high temperature in cities with different latitudes.

c. Finding the average high temperature in a specific month (for example, September) in cities that have different latitudes.
d. Finding the average yearly temperature in cities that have different latitudes.

Activity 2: Plotting the Weather
Modeling temperature as a function of latitude is too restricting. Remember, as a function, if latitude is our input (domain), then there can be only one possible output of temperature (range). But, as the cities of Seattle and Spokane demonstrated, one latitude can produce two different temperatures. Therefore, we can ask whether or not there is an association (general relationship) between temperature and latitude.

A. Background knowledge review:

A scatter plot is used to determine whether there is a relationship between paired data. If y tends to increase as x increases, x and y are said to have a positive correlation. And if y tends to decrease as x increases, x and y are said to have a negative correlation.

From a scatter plot, you can make predictions as to what will happen next. To help with the predictions you can draw a line, called a best-fit line that passes close to most of the data points. Approximately half of the data points should be below the line and half of the points should be above the line. If the data points come close to the best-fit line, then the correlation is said to be strong.

B. Discussion - Look at the scatterplot below with a family member. Ask each other, “What do you notice? What do you wonder?” What does each point in the scatterplot represent? Is there a relationship between the month of the year and the amount of rainfall?
C. **Temperature vs. Latitude** - The data in the table below shows the average high temperature in September for cities in the U.S. and Canada at different latitudes.

1. On a sheet of graph paper below, make a scatter plot of the data.
 - Latitude is your independent variable. Temperature is your dependent variable.
 - What is the range of data for each variable? This will help you decide your intervals along each axis.

<table>
<thead>
<tr>
<th>city</th>
<th>Latitude (degrees North)</th>
<th>Temperature (degrees Fahrenheit)</th>
<th>city</th>
<th>Latitude (degrees North)</th>
<th>Temperature (degrees Fahrenheit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta, GA</td>
<td>33.38</td>
<td>82</td>
<td>Minneapolis, MN</td>
<td>44.53</td>
<td>71</td>
</tr>
<tr>
<td>Portland, ME</td>
<td>43.38</td>
<td>69</td>
<td>New York, NY</td>
<td>40.38</td>
<td>75</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>42.22</td>
<td>73</td>
<td>Orlando, FL</td>
<td>28.26</td>
<td>90</td>
</tr>
<tr>
<td>Dallas, TX</td>
<td>32.51</td>
<td>88</td>
<td>Philadelphia, PA</td>
<td>39.53</td>
<td>78</td>
</tr>
<tr>
<td>Denver, CO</td>
<td>39.46</td>
<td>77</td>
<td>San Antonio, TX</td>
<td>29.32</td>
<td>89</td>
</tr>
<tr>
<td>Edmonton, AB</td>
<td>53.34</td>
<td>62</td>
<td>San Francisco, CA</td>
<td>37.37</td>
<td>74</td>
</tr>
<tr>
<td>Fairbanks, AK</td>
<td>64.48</td>
<td>55</td>
<td>Seattle, WA</td>
<td>47.36</td>
<td>69</td>
</tr>
<tr>
<td>Juneau, AK</td>
<td>58.22</td>
<td>56</td>
<td>Tampa, FL</td>
<td>27.57</td>
<td>89</td>
</tr>
<tr>
<td>Kansas City, MO</td>
<td>39.16</td>
<td>78</td>
<td>Tucson, AZ</td>
<td>32.13</td>
<td>93</td>
</tr>
<tr>
<td>Lincoln, NE</td>
<td>40.51</td>
<td>77</td>
<td>Yellowknife, NT</td>
<td>62.27</td>
<td>50</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>25.45</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activity 3: Using and Interpreting a Mathematical Model

A. Using a Mathematical Model - In the previous activity, you found the equation of a line that fits the association between latitude and temperature. This is called a mathematical model.

1. Use your model to predict the average high temperatures in September for the following cities which were not included in the original data table:
 a. Detroit, MI - latitude 42.14° N
 b. Albuquerque, NM - latitude 35.2° N
 c. Nome, AK - latitude 64.5° N
 d. Chicago, IL - latitude 41.88° N

2. Add the data points for the four cities to your scatter plot using a different colored pencil.

3. The actual high temperatures for the four cities are as follows: Detroit (74°F), Albuquerque (82°F), Nome (49°F), Chicago (74°F).
 a. How well did your model predict the temperature?
 b. If you added these actual temperatures to your scatterplot, would you adjust the location of your line? Why or why not?

B. Interpreting a Mathematical Model - Refer to your equation for the line that models the association between latitude and temperature of cities. Answer the following questions on your paper.

1. What does the slope mean in the context of this situation?
2. Find the x- and y-intercepts and describe what they mean in the context of this situation.
3. Can you think of a city or location that cannot be represented using this same model? Explain your thinking.

Activity 4: Reflection
Thinking about your scatterplot and mathematical model, discuss your answers to the following questions with a family member:

1. What are some limitations of the model?
2. Do these limitations mean that the model is not good or useful?
3. What other variables could you investigate for predicting the temperature or the weather?
OPTIONAL Cross Content Connection: Earth Science - Exploring how the Earth’s tilt on its axis affects climate at different latitudes

Watch the following video and answer the questions:
http://www.youtube.com/watch?v=95TlXjOEv4

1. What influences does the Sun have on a region’s climate?
2. Does the tilt of Earth’s axis of rotation influence climate?
3. What is latitude?
4. What is the Equator and what is the climate there like?
5. What is the Tropic of Cancer and the Tropic of Capricorn?
6. What is the climate of the area between the Tropic of Cancer and Tropic of Capricorn?
7. What are the middle latitudes? What is the climate like in this region generally?
8. Describe the polar regions.
9. What is elevation? How does elevation affect climate?
10. Besides the amount of precipitation a region gets, what else about precipitation affects climate?
11. How do wind and water currents affect climate?
Eighth Grade Science Project: The Gravity Light

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 120-130 minutes</th>
</tr>
</thead>
</table>

| Grade Level Standard(s) | MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
| | MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. |

| Caregiver Support Option | Students may need assistance in setting up the hands-on activity or finding materials on Day 4. |

| Materials Needed | All activities:
| | • Paper or notebook to record notes, observations and reflections
| | • Writing utensil (Ex: pencil, pen, marker, etc.)
| Hands-On Activity: | • Option 1 Materials:
| | ○ small bowl/plasticware, 1
| | ○ small fine-grain material, enough to fill half the bowl/plasticware (examples: flour, powdered sugar) - or - soft playdough or clay
| | ○ small dense ball (examples: golf ball, marble, ball bearing)
| | ○ ruler, if a ruler is not available, you will need a sheet of paper to mark different drop heights
| | • Option 2 Materials:
| | ○ Ball that bounces |

| Question to Explore | How does the Gravity Light transform potential energy into light energy? |

| Student Directions | This project guide will lead you through multiple activities that will help you explore the science behind the Gravity Light. There is even a hands-on activity, which complements the scientific principles you will be reviewing throughout this project. By the end of the project, you will be able to answer the question, “How does the Gravity Light transform potential energy into light energy?”.
| | For pacing you could, **complete one investigation question per day**. Grab a piece of paper or notebook and a writing utensil and let’s do science! |
Activity 1: Introduction to the Phenomenon & Background Information (Days 1-3)

Investigation Question: What is the Gravity light?

1. **NOTES:** Record the investigation question.
2. **Read and annotate this article:**

<table>
<thead>
<tr>
<th>Source: Fast Company</th>
</tr>
</thead>
</table>

This Ingenious $20 Lamp Gets All Its Energy From Gravity

Three years ago, GravityLight raised a ton of money through crowdfunding. Then it was time to actually make it work.

BY BEN SCHILLER

The ingenious GravityLight—a light that gets all its energy from its own weight—first appeared about three years ago. We wrote about it as it was launching on Indiegogo and went on to raise $399,590. It provides free light (after you’ve bought it). It’s cheap. And it has none of the environmental or health side-effects as do other light alternatives in the developing world. But even all those things aren’t necessarily enough if it’s to reach its potential. If the company and foundation behind the device are to make it a success, they need a reliable product; they need to distribute it in places where distribution can be difficult; and, more fundamentally, they need to explain why someone should buy a GravityLight when there’s plenty of good, cheap solar on the market today.

Thankfully the company seems to have most of the questions answered, as least so far.

The light has a gear-train and DC generator. As a heavy object pulls down on one side, it creates a force that’s converted into electricity. The lamp can last for hours on a single lift to one side, and, of course, that lift is renewable: When one side drops to balance, you just hoist it up again. With a string of mini-lights attached, it can illuminate a small room. And, importantly, without the problems that come with kerosene lamps (fumes, fire), which are still widely used in off-grid places.

After the first campaign, GravityLight sent the device to organizations and individuals in 26 countries. They tested it and reported back about what they liked and didn’t—feedback that’s now been incorporated into a version two. Children apparently liked swinging on it, meaning it could break, and some families complained that lifting 22 pounds was too much for them. The new...
version, which launches next spring, has a stronger plastic housing, and a new pulley system that effectively reduces the weight by three-quarters. It also comes with auxiliary mini-lights, or “SatLights,” that can be extended in series.

“The SatLights have really revolutionized the experience,” says commercial director Caroline Angus. “Now someone can be reading while someone else is cooking, rather than there just being this one light on that one person, or a narrow part of the room.”

With the proceeds from a second Indiegogo campaign, GravityLight is now setting up an assembly line in Kenya. The lamp will cost $20 and be distributed through door-to-door (Avon Lady-type) networks, farmer groups, and more traditional market stalls.

Angus sees a wide range of people buying the product, from families who currently use kerosene lamps, to people who have grid power but are afraid of blackouts. “It’s everyone from people on $2 a day to the slightly more affluent who are just conscious of the next power cut because maybe they haven’t already charged a solar light,” she says. The GravityLight is more dependable than a solar lamp, she says. It’s on-demand, whereas solar power is dependent on the weather, or your foresight in charging up a battery ahead of time.

It certainly sounds like GravityLight has answers to the big questions. But, it’s still early days, and we won’t know for sure until the new product hits the streets next year.

3. **NOTES:** What are 2-3 questions you have about the Gravity Light?
4. **NOTES:** Answer the investigation question: What is the Gravity Light?

Investigation Questions: What is energy? What are the two types of energy?

1. **NOTES:** Record the investigation question.
2. **NOTES:** What do you think about when you think of the word “energy”?
3. Read and annotate this excerpt from a NewsELA article:

Source: NewsELA

An explanation of the two types of energy: potential and kinetic
By Gale, Cengage Learning on 12.15.19

Billiards, often called pool, is a good example of how energy can be transferred between objects. When a ball is still, it has potential energy. When a ball moves, it has kinetic energy. When one ball hits another, kinetic energy is transferred to the second ball. Photo by PIRO4D/Pixabay
Energy is involved in nearly everything we do. It is defined as the ability to do work, to set an object in motion. There are several different kinds of energy. Kinetic energy is the energy an object has when it is in motion. Vibration, forward motion, turning and spinning are all examples of kinetic energy. Kinetic energy is directly proportional to the mass of an object. If two objects move at the same speed, and one has twice the mass of the other, the object with twice the mass will have twice the kinetic energy.

Potential energy is the energy an object has because of its position; it is energy waiting to be released. For example, a weight suspended above the ground has potential energy because it can be set in motion by gravity. Compressed or extended springs also have potential energy.

Thermal energy is the kinetic energy of atoms vibrating within matter. The faster the atoms move, the hotter the object becomes. Electrical energy is the kinetic energy resulting from the motion of electrons within any object that conducts electricity. Chemical energy is the potential energy stored in molecules. Thermal, electrical and chemical energy are all forms of kinetic or potential energy.

4. **NOTES:** What is one example in your home of kinetic energy? What is one example in your home of potential energy?
5. **NOTES:** Answer the investigation question: What is energy? What are the two types of energy?

Investigation Question: How do objects get energy?

1. **NOTES:** Record the investigation question.
2. **NOTES:** We will investigate the claim: Objects get energy from other objects. Observe the screenshot scenarios from the Amplify Harnessing Human Energy Sim.

Screenshot Scenario 1
Screenshot Scenario 2
3. NOTES: Recreate the Reasoning Tool below in your notes leaving enough space to write in the blank boxes. Fill out the reasoning tool identifying and explaining evidence from the screenshots that support the claim “Objects get energy from other objects.”

Reasoning Tool

<table>
<thead>
<tr>
<th>Evidence (observations from the Simulation)</th>
<th>This matters because . . . (How does this evidence support or go against the claim)</th>
<th>Therefore, . . . (the claim that the evidence supports or goes against) is/is not supported.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. NOTES: Answer the investigation question: How do objects get energy from other objects?

Activity 2: Exploring Potential Energy (Days 4-5)

Investigation Question: How does the height of an object affect its potential energy?

1. NOTES: Record the investigation question.

2. There are two options to investigate the investigation question: Choose the option that works best for you based on the materials you have available at home. Both options could be performed inside or outside (weather permitting).

<table>
<thead>
<tr>
<th>Option 1</th>
<th>Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials needed:</td>
<td>Materials needed:</td>
</tr>
<tr>
<td>● small bowl/plasticware, 1</td>
<td>● ball that bounces</td>
</tr>
<tr>
<td>● small fine-grain material, enough to fill half the bowl/plasticware (examples: flour, powdered sugar) - or - soft playdough or clay</td>
<td></td>
</tr>
<tr>
<td>● small dense ball (examples: golf ball, marble, ball bearing)</td>
<td></td>
</tr>
<tr>
<td>● ruler, if a ruler is not available, you will need a sheet of paper to mark different drop heights</td>
<td></td>
</tr>
</tbody>
</table>

3. NOTES: Design an experiment that will provide evidence to answer: How does the height of an object affect its potential energy?
 a. What are your independent variables? What will be your dependent variable?
 b. Write a step-by-step procedure explaining how you will go about your test. Make sure you only change one variable at a time if you choose to test multiple variables.
 c. Design a data table that displays the data you collect.
 d. Analyze the data you collected. How does height affect the amount of energy in
your system? Remember: Energy is the ability to make things move or change. Think about the changes you saw in your results as you increased or decreased height.

4. **NOTES:** Answer the investigation question using evidence from your own experiment.

Investigation Question: How does the height of an object affect its potential energy?

1. **NOTES:** Record the investigation question.

2. Observe the screenshots of the two different simulations below and then answer the analysis questions:

Simulation 1
Source:

Chicago Public Schools

21
NOTES: Analysis Questions

- Look at the energy graphs of the simulations.
 - When is the potential energy the highest? Use evidence from the screenshots.
 - When is potential energy the lowest? Use evidence from the screenshots.

3. NOTES: Answer the investigation question: How does the height of the objects affect their potential energy?

Activity 3: Exploring Energy and Force (Day 6)

Investigation Question: What is gravity?

1. NOTES: Record the investigation question.
2. Read and annotate this article:
How does gravity pull things down to Earth?

By Monica Grady, The Conversation on 01.16.20

Image 1. Everything in the universe has its own gravitational pull. When you throw an apple into the air, the Earth's gravity pulls it back down. But that's not the only thing that's happening: The gravity of the apple is also pulling on the Earth. Image by: Westend61/Getty Images

Gravity is a force, which means that it pulls on things. But the Earth isn't the only thing which has gravity. In fact, everything in the universe, big or little, has its own pull because of gravity – even you.

Isaac Newton was one of the first scientists to figure out the rules of how gravity behaves. The story goes, he was sitting under an apple tree when one of the fruits fell off. As he saw the apple fall down to the ground, he started to wonder why it didn't go up to the sky instead.

After lots of experiments, and some very clever thinking, he worked out that the force of gravity depends on how heavy objects are, and that the pull of gravity between objects gets smaller the farther apart they are. To see how gravity works in our universe, we're going to take a journey, with a few stops along the way.

First off, we'll go to the park and play a game of football. When you kick the football into the air, the Earth's gravity pulls it back down. But that's not the only thing that's happening: The gravity of the football is also pulling on the Earth. The thing is, the Earth is very heavy – much heavier than the football – so it's unaffected by the pull of the football, while the football itself is pulled back down to Earth.

Our next stop is the moon, and as we journey up into space, there's a good chance you'll see the sun. Now, the sun is much, much bigger than the Earth, which means its pull is very powerful indeed.

You might be wondering why the Earth (and all the other planets) don't just fall into the sun, the same way the football falls to Earth. The answer is that the planets are all moving, and the balance between the force of gravity and the speed of their movement (which comes from when they were first made, about 4.5 billion years ago) keeps them circling round the sun.

When we arrive on the moon, you'll see that the pull of gravity is not the same everywhere. It is related to how heavy – or how massive – an object is. If you jump on the moon, you'll be able to go
much higher than you can on Earth. This is because the Earth is bigger than the moon, so the force between you and the Earth – which is what we call weight – is bigger than the force between you and the moon. On the moon, you seem to weigh less than on Earth, so you can jump higher.

Our final stop is the seaside. Sitting on the beach, you can see the sea gradually getting closer and closer to you – this is the tide coming in. After some time, the sea seems to get farther away – now, the tide is going out. But the sea is not actually moving in and out – it is moving up and down. As the sea level rises, the water gets closer to you, because the beach you are sitting on slopes upwards away from the sea. And as the sea level drops down, the water gets farther away from you.

This is also an effect of gravity, and it happens because the moon is close to the Earth. Unlike the football, the moon is heavy enough to have an effect – just a little one, because the Earth is still much heavier – but it's enough for us to notice when we watch the tides. As the water level rises, it is being pulled toward the moon, and the tide comes in. Then the tide goes out, and the water level drops, as the moon rotates around the Earth.

An interesting question is why we don’t have enormous tides caused by the sun pulling on the Earth. We know that the sun is much bigger than the moon – so surely it ought to be able to pull water toward it? Actually, it does – but much less than the moon. This is because although the sun is much bigger than the moon, it is much, much farther away – and the pull of gravity gets weaker the bigger the distance between objects.

So, next time you’re kicking a football around in the park, you’ll know how gravity is bringing the football back down to Earth.

3. NOTES: Answer the investigation question: What is gravity?
4. Bonus: Find a member of your household and explain what you learned about gravity to them.

Activity 4: Exploring Energy Transfer and Conversion (Days 7-8)
Investigation Question: How does force relate to potential energy and kinetic energy?

1. NOTES: Record the investigation question.
2. Read the introduction from this article in Amplify:
3. Source:
Chapter 1: Introduction

Can you fly through the air? Can you zoom down a snowy mountain at 80 kilometers per hour (50 miles per hour)? With a little extra equipment and some practice, you probably can: extreme sports allow us to do exhilarating things our bodies can’t do on their own. To get the speed and height we like so much, these sports rely on two kinds of energy—kinetic energy, which is the energy of motion, and potential energy, which is stored energy. By adding a force to the mix, these two types of energy can be converted back and forth—motion energy can become stored energy, and stored energy can become motion energy. For extreme athletes, that conversion usually means speed, height, or both! To learn more about how energy and force make these exciting things possible, read one of the chapters that follow.

4. **NOTES:** How are extreme athletes able to get speed and/or height?
5. Read one of the two chapters below from the same article and then answer the analysis questions.

Chapter 2: Snowboarding

Is there any bigger thrill than weaving down a mountain on a snowboard? The world record for speed on a snowboard is a whopping 203 kilometers per hour (126 miles per hour), and advanced snowboarders regularly reach speeds of 65-70 kph (40-45 mph) to launch themselves high into the air off ramps in the snow. Going that fast requires a lot of kinetic energy. Kinetic energy can’t appear out of nowhere, although it can be transferred or converted from a different form of energy. How do snowboarders get the kinetic energy they need to launch themselves into the air?

It’s all about gravity. Gravity is a pulling force that can change the motion of an object. When Earth pulls objects toward itself with the force of gravity, it can transfer energy between the parts of systems. The snowboarder and Earth form a system. When the ski lift pushes the snowboarder to the top of the mountain, the ski lift is pushing against the force of gravity. The ski lift transfers energy into the snowboarder-Earth system, where it is stored as potential energy. When the snowboarder starts going downhill, the force of gravity transfers this potential energy to the snowboarder and converts it back into kinetic energy.
it to kinetic energy. As a result, the snowboarder goes faster and faster.

We say energy is stored in the system when the snowboarder is pushed away from Earth by the ski lift, but what does that actually mean? The system of Earth and the snowboarder is kind of like a rubber band. If you stretch a rubber band, the energy you’re using to pull the rubber band apart is stored in the rubber band itself. When the rubber band snaps back to its unstretched shape, the stored energy is released. There is no invisible rubber band between a snowboarder and Earth, so where is the energy stored?

Earth and the snowboarder are connected by Earth’s gravitational field, the space in which Earth can pull on objects at a distance. Even if we can’t see the gravitational field, we can feel it—it’s what keeps our feet on the ground and brings us back to Earth when we jump up and down. When the ski lift carries the snowboarder upward and away from Earth, potential energy is stored in the gravitational field between Earth and the snowboarder. When Earth pulls the snowboarder down the hill again, the force of gravity transfers potential energy from the gravitational field to the snowboarder in the form of kinetic energy. So reaching top speed on the mountain isn’t just about great snow and a cool board. Without gravity, snowboarders wouldn’t go anywhere!

Chapter 3: Skydiving

Would you ever jump out of an airplane thousands of feet above the ground? Skydivers looking for a thrill do it all the time! Skydivers start their dives from airplanes high above the ground and end up falling toward Earth’s surface at speeds as high as 290 kilometers per hour (180 miles per hour). The skydivers aren’t doing anything to make themselves go faster. So where do they get the kinetic energy to fall so quickly?

It’s all about gravity. Gravity is a pulling force that can change the motion of an object and transfer energy into systems of objects. The skydiver and Earth form a system. When the airplane pushes the skydiver high into the sky, it pushes against the force of gravity and transfers energy into the skydiver-Earth system. That energy is stored as potential energy in that system. When the skydiver starts to fall toward Earth, the force of gravity transfers this potential energy to the skydiver and converts it to kinetic energy. As a result, the skydiver picks up a lot of speed.

What does it mean when we say energy is stored in the system of the skydiver and Earth? To understand this idea, it helps to think of the system as being like a rubber band. If you stretch a rubber band, the energy you’re using to pull the rubber band apart is stored in the rubber band itself. When the rubber band snaps back to its unstretched shape, the stored energy is released. But there is no invisible rubber band between a skydiver and Earth, so where is the energy stored?

Between Earth and the skydiver is...
Earth's gravitational field, the space in which Earth can pull on objects from a distance. We can't see the gravitational field, but we can feel it in the form of a pull toward Earth. When the airplane carries the skydiver upward and away from Earth, potential energy is stored in the gravitational field between Earth and the skydiver. When Earth pulls the skydiver back down, the force of gravity transfers potential energy from the gravitational field to the skydiver and converts it into kinetic energy—that is, motion. Because the skydiver gains kinetic energy, he or she gains speed during the fall to Earth.

- NOTES: Answer the analysis questions:
 - Which extreme sport did you read about?
 - In what instances is potential energy involved in your sport?
 - In what instances is kinetic energy involved in your sport?
 - How do the athletes get kinetic energy in your sport?

6. Look at the diagram below and then answer the question in your notes:

![Diagram](image)

- NOTES: Using the diagram above and the information you learned from the article, explain what happens in each panel of the diagram.

7. NOTES: Answer the investigation question: How does force relate to potential energy and kinetic energy?

Investigation Question: How can a system transfer energy to make a generator move?

1. NOTES: Record the investigation question.
2. Read and annotate this chapter from the Amplify article “Capturing Human Energy”:

Hand-Crank Flashlight
Have you ever used a hand-crank flashlight? You turn a crank on the outside of the flashlight and the crank turns a generator inside the flashlight. A generator is a machine that stores energy by charging a battery. When the generator turns, it converts kinetic energy to electrical energy, which is then stored in a battery as potential energy. The potential energy stored in the battery can be used right away or saved for later. The energy that powers the light comes from the battery—but before that, it came from you. When you use a hand-crank flashlight, you are using your body’s energy to power a light!

The disadvantage of a hand-crank flashlight is that you have to turn the crank in order to charge the battery. The longer you plan to use the flashlight, the more energy you need to store and the more cranking you have to do.

However, turning a crank isn’t the only way to store energy in a generator. There are lots of other ways to release kinetic energy: bouncing, stretching, compressing, and other forms of motion all involve kinetic energy, which means they can be used to turn a generator and store electrical energy in a battery. Now imagine if those motions allowed you to charge that battery just by doing everyday activities—things you have to do anyway, like walking.

Some people have invented devices that do just that: convert kinetic energy from everyday activities into electrical energy, storing the energy in batteries as potential energy that can be used to power flashlights, cell phones, and other devices. Students, business people, engineers, and even hobbyists have come up with ideas for inventions like this. You can read one or more of the chapters that follow to find out about a few of them.

4. **NOTES:** Create a flow diagram that explains how a hand-crank flashlight works. An example of a flow diagram for an Energy-Capturing Knee brace is below.

 ![Flow Diagram Example](image)

 - Taking a step...
 - Makes the generator in the knee brace move...
 - Which charges the battery...
 - Which can power a cell phone or other equipment.

 = energy transfer

5. **NOTES:** Answer the investigation question: How can a system transfer energy to make a generator move?
Activity 5: Creating an Explanatory Model (Day 9)

Phenomenon: How does the Gravity light transform potential energy into light energy?

1. It’s time to create a model to explain how the Gravity light works. Specifically, you will be answering the question, “How does the Gravity Light transform potential energy into light energy?”.
 a. First create a model that illustrates how the Gravity Light transforms potential energy into light energy. In your model you must include the “Must Have” items listed below. For the model, make sure to include any labels to help distinguish what your illustrations are showing.
 Model (template located on the last page of this packet):
 - Must Have Items:
 - Forces present between objects in the system
 - Types of energy (including potential, kinetic, and light)
 - Energy transfers
 - Energy conversions

 b. Next provide a written explanation of each stage of your model. Do this in your notes. Make sure that in your explanation, you include the “Must Have” items listed below. Write at least a paragraph explaining each stage.
 Explanation:
 - Must Have Items:
 - Relationships between forces and energies
 - Relationship of height and potential energy
 - Energy transfers within the system
 - Energy conversions within the system

Cross Content Connection (Day 10):

Math Connection

1. NOTES: Create a graph that plots the following data about height and potential energy.

<table>
<thead>
<tr>
<th>Height</th>
<th>Potential Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 centimeters</td>
<td>4 J</td>
</tr>
<tr>
<td>175 centimeters</td>
<td>5 J</td>
</tr>
<tr>
<td>250 centimeters</td>
<td>8 J</td>
</tr>
<tr>
<td>350 centimeters</td>
<td>14 J</td>
</tr>
<tr>
<td>50 centimeters</td>
<td>2 J</td>
</tr>
<tr>
<td>325 centimeters</td>
<td>11 J</td>
</tr>
</tbody>
</table>
2. **NOTES:** What is the relationship between height and potential energy? Use evidence from your graph to support your claim.

Digital Connections (optional):

YouTube Videos about the Gravity Light:
- https://www.youtube.com/watch?v=JrHBlmXz370
- https://www.youtube.com/watch?v=hJ4tMzf3mA0
- https://www.youtube.com/watch?v=XXQZcvPlQd-4

NOTES: Extension
- Research at least one other sustainable energy device.
- Summarize one invention you find and how it works.
- Where does the energy come from to power the device you read about?

Exploring Potential Energy and Height Simulations:

Website:

- **NOTES:** Analysis Questions
 - Look at the energy graph in the top left corner of the simulation.
 - What happens to the Gravitational PE as the jumper jumps up?
 - What happens to the KE as the jumper jumps up?

Social Studies Connection:

- Read “Help all communities get clean energy, group says” at:
 https://newsela.com/read/solar-power-uneven-benefits/id/50974/

- **NOTES:** As you read, annotate and respond to the following: How can sustainable energy resources address issues of social justice?
Eighth Grade Social Science Project: Exploring Identity

<table>
<thead>
<tr>
<th>Estimated Time</th>
<th>Total Time 120-130 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level Standard(s)</td>
<td>SS.IS.3.6-8: Determine sources representing multiple points of view that will assist in organizing a research plan.</td>
</tr>
<tr>
<td></td>
<td>SS.IS.5.6-8.MdC: Identify evidence from multiple sources to support claims, noting its limitations.</td>
</tr>
<tr>
<td></td>
<td>SS.IS.6.6-8.MdC: Construct explanations using reasoning, correct sequence, examples and details, while acknowledging their strengths and weaknesses.</td>
</tr>
<tr>
<td>Caregiver Support Option</td>
<td>Allow students to share created artifacts. Celebrate student work and ask follow-up questions. Caregivers can create their own identity artifact to share with students.</td>
</tr>
<tr>
<td>Materials Needed</td>
<td>Paper/Notebook/Journal; materials of choice for project</td>
</tr>
<tr>
<td>Question to Explore</td>
<td>How do individuals express their identity in the public sphere? How can I express my identity in the public sphere?</td>
</tr>
<tr>
<td>Student Directions</td>
<td>This guide is designed to help you think about your own identity and explore how others express their identities. You will create an artifact to represent your identity.</td>
</tr>
</tbody>
</table>

Activity 1: What is identity?

A. What is identity?
 - Think about the questions: Who am I? What words or labels would you use to describe yourself? (This could be things you are good at, things you enjoy, personal qualities, etc.)
 - In your notebook, list the first 5–7 ideas that come to mind.

B. Identity chart
 - Look at the sample identity chart below.
C. Create your own identity chart
 ○ In your notebook, create your own identity chart, with the words or phrases from Part A.
 ○ Add any additional words or phrases inspired by the sample identity chart.
 ○ Think about what words others might use to describe you that you might or might not use to describe yourself. Add those to your identity chart if you choose to.

D. Answer TWO of the questions below in your notebook.
 ○ What parts of your identity do you choose for yourself? What parts of your identity do you feel are determined by others, by society, or by chance?
 ○ Whose opinions and beliefs have the greatest effect on how you think about your own identity?
 ○ What dilemmas arise when others view you differently than how you view yourself?
 ○ What aspects of your identity do you keep private in order to be accepted? What aspects of your identity are you willing to change to fit in?

(Activity 1 adapted from Facing History and Ourselves)

Activity 2: How do individuals express their identity in the public sphere?

A. “Folks can change their ways much as they want to. But I don’t care how many times you change your ways, what’s in you is in you, and it’s got to come out.” - James Baldwin
 ● In your notebook, respond to James Baldwin’s quote. What do you think he means when he says, “what’s in you is in you, and it’s got to come out?”
 ● What are the different ways people let their ideas come out or express their identity?
B. Poetry - One way that people express their identity is through poetry. Read the poem, “I Am From,” written by a CPS student (inspired by “Where I’m From” by George Ella Lyon).

I Am From
by Natalie (age 13)

I am from Brighton Park Chicago
From St. Anthony Hospital
I am from the scent of roses and flowers
From the chittering of hidden bugs
To the echo of firecrackers seconds before midnight
I am from Spanish and Mexican blood
The craves that carry my tradition
The celebration, and the crys
I’m from
My mother’s outlook on the world
And my father’s kind talk
To my mother and father’s skin, white and brown, blended into a caramel
I am from my family’s influences
And branded words
To my catholic beliefs
I am from ironed shirts on Sunday
To a never give up every morning on Monday
From savory dishes
And thick spices
I’m from the move to the square house
Now my home
To the tears and the sighs and the exasperated mutters
I’m from the worn floors and the grins of proud family pictures
And the devotion of my parents, so instructing
I am from them, their only daughter
My people
They molded myself into someone that carried their life lessons
I AM a tree
Surviving with my branches and roots
And the sunlight
And also the darkness
That with assistance
Anyone can overcome, including me

In your notebook, answer the following questions in response to the poem:

- What aspects of the author’s identity stand out to you?
- What is one question you would ask the author if you had the opportunity?
C. Visual Art - Another way that individuals express identity is by making visual art. If possible, visit this site to see the artwork in color: https://tinyurl.com/towardsidentity. The painting below, *Towards Identity* by Nelson Stevens, depicts a woman from the neck up in a color palette of purple, blue, red, and orange. Stevens was part of the AfriCOBRA art collective which was founded in Chicago in 1968. The artists sought to celebrate and express contemporary Black culture and community.

Look carefully at the painting for about a minute. In your notebook, answer the following questions in response to the painting:

- Jot down five things you see or notice. What pulls your attention? Why?
- What emotions are expressed in this?
- What does this painting convey about this woman’s identity?
- The title of this work is *Towards Identity*. What ideas about identity do you think the artist is trying to share?
D. Music - Another way that individuals express their identity is through music. Read the excerpted lyrics of the song, “Wrote My Way Out” from the mixtape of the musical Hamilton below. As you read, circle words and phrases that stand out to you.

“Wrote My Way Out”
by Nas, Lin-Manuel Miranda, Dave East, and Aloe Blacc

I wrote my way out
When the world turned its back on me
I was up against the wall
I had no foundation
No friends and no family to catch my fall
Running on empty, with nothing left in me but doubt
I picked up a pen
And wrote my way out
I picked up the pen like Hamilton
Street analyst, now I write words that try to channel 'em
No political power, just lyrical power

Y'all, I caught my first beatin’ from the other kids when I was caught readin’
“Oh, you think you smart? Blah! Start bleedin’”
My pops tried in vain to get me to fight back
Sister tapped my brains, said, pssh, you’ll get ‘em right back
Oversensitive, defenseless, I made sense of it, I pencil in
The lengths to which I’d go to learn my strengths and knock ‘em senseless
These sentences are endless, so what if they leave me friendless?
You got no chill, right I’m relentless
I know Abuela’s never really gonna win the lottery
So it’s up to me to draw blood with this pen, hit an artery
This Puerto Rican’s brains are leakin’ through the speakers
And if he can be the shinin’ beacon this side of the G.W.B and
Shine a light when it’s gray out

I wrote my way out
Oh, I was born in the eye of a storm
No lovin’ arms to keep me warm
This hurricane in my brain is the burden I bear
I can do without, I’m here
Cause I wrote my way out

In your notebook, answer the following questions in response to the song:

- What line do you think most strongly conveys the author’s identity? Explain.
- What were some pressures or judgements the author experienced? How did the author resist the outside pressure on his identity?
E. Photography - Individuals can also express identity through how they present themselves to the camera. Photographers can influence how we perceive their subjects based on the choices they make.

Examine the photograph to the right. In your notebook answer the following questions:

- What do you notice about the person in the photograph? What do you think he wants to communicate? Why?
- What do you notice about the setting?

Photographer Dawoud Bey made this photograph in 1976 as part of a larger series documenting the African-American community in Harlem, New York.

His photography focuses on portraying people from marginalized groups, often people of color and young people. In an exhibit portraying teens from New York City, he stated, "We don’t often think of teenagers as being complex and engaging human beings. I want these photographs to suggest that there is no one way to view a person."

He added, "I think what I get out of it is the energy that comes from teenagers. It's also a way for me to connect with them, finding out what we have in common. All portraits are self-portraits. They are as much about the photographer as they are about the subject."

In your notebook answer the following questions:

- How did the additional background information about the photographer impact what you see in the photograph?
- What does Bey suggest about his own identity through this photograph?
- What does Bey suggest about the identity of the young person through this photograph?
- What role can others play in identifying and expressing our own individual identity?

F. Activity 2 Reflection

Think about the four expressions of identity you have explored. Answer the following questions in your notebook:

- What is the power in expressing one’s identity in the public sphere?
- How do you feel after reading and analyzing other people’s expression of their identity? How may this influence how you think about your identity?

Activity 3: How can I express my identity?

A. Create an artifact that represents your identity. This could be a song, poem, photo collage, dance, drawing, film, letter, sculpture, dance, digital art, etc. Because the artifact represents you, the format of your artifact should be a reflection of you. Use one or more of the questions below for ideas to guide you in creating your artifact:

Guiding Questions:

- What is your most memorable moment? How has this shaped you?
- Who are people that have influenced or inspired you? Why have they been so impactful? How have they inspired you?
- Tell the story of the scars or other features of your body.
- What is the story of your name? Interview your parents to find out why they chose the name. How connected do you feel to your name now? Why?
- Has place been important in your life? Have you lived in many different places or only one? How have your places affected you?
- What role does religion play in your life? Does religion impact your schedule, food, beliefs, etc?
- How and when did your family come to the United States? Are you or your parents immigrants? If so, how does being an immigrant affect your life?
- Where were your ancestors from? How is the culture of that place evident in your family life today? Has your family’s culture been adapted or changed over time?
- What languages does your family speak? How does language impact your family and your experience with the world?
- What traditions does your family hold? Do they involve holidays, traditional clothing, food, special events, etc?
Activity 4: Reflection
After completing your artifact, share what you created with others in your household. Also consider sharing with your friends or colleagues over the phone or digitally.

Answer the following questions in your notebook:
● What did you learn throughout the process?
● What did you learn about yourself and others through creating and sharing your artifact?

After sharing your artifact, challenge a family member or friend to create and share their own identity artifact.

Cross Content Connection:
● Social Science & Literacy: While students are gathering evidence from various news articles, poems, op eds, and photos, they are considering the author’s perspective and purpose, evaluating the credibility of the source, and citing evidence to support a claim.